2014-02-18 22:37:48 +01:00
%!TEX root = GeoTopo.tex
2014-02-08 21:23:01 +01:00
\markboth { Symbolverzeichnis} { Symbolverzeichnis}
2014-01-30 21:53:35 +01:00
\twocolumn
2014-02-08 21:23:01 +01:00
\chapter * { Symbolverzeichnis}
2013-11-26 23:00:58 +01:00
\addcontentsline { toc} { chapter} { Symbolverzeichnis}
2013-10-25 12:44:39 +02:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2013-11-26 23:00:58 +01:00
% Mengenoperationen %
2013-10-27 11:16:34 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2013-11-26 23:00:58 +01:00
\section * { Mengenoperationen}
2014-03-19 10:57:57 +01:00
Seien $ A, B $ und $ M $ Mengen.
% Set \mylengtha to widest element in first column; adjust
% \mylengthb so that the width of the table is \columnwidth
\settowidth \mylengtha { $ A \subsetneq B $ }
\setlength \mylengthb { \dimexpr \columnwidth -\mylengtha -2\tabcolsep \relax }
\begin { xtabular} { @{ } p{ \mylengtha } P{ \mylengthb } @{ } }
$ A ^ C $ & Komplement von $ A $ \\
$ \mathcal { P } ( M ) $ & Potenzmenge von $ M $ \\
$ \overline { M } $ & Abschluss von $ M $ \\
$ \partial M $ & Rand der Menge $ M $ \\
$ M ^ \circ $ & Inneres der Menge $ M $ \\
$ A \times B $ & Kreuzprodukt\\
$ A \subseteq B $ & Teilmengenbeziehung\\
$ A \subsetneq B $ & echte Teilmengenbeziehung\\
$ A \setminus B $ & Differenzmenge\\
$ A \cup B $ & Vereinigung\\
$ A \dcup B $ & Disjunkte Vereinigung\\
$ A \cap B $ & Schnitt\\
\end { xtabular}
2014-02-21 11:42:45 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Geometrie %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-01-21 22:02:38 +01:00
\section * { Geometrie}
2014-03-19 10:57:57 +01:00
\settowidth \mylengtha { $ \overline { AB } \cong \overline { CD } $ }
\setlength \mylengthb { \dimexpr \columnwidth -\mylengtha -2\tabcolsep \relax }
\begin { xtabular} { @{ } p{ \mylengtha } P{ \mylengthb } @{ } }
$ AB $ & Gerade durch die Punkte $ A $ und $ B $ \\
$ \overline { AB } $ & Strecke mit Endpunkten $ A $ und $ B $ \\
$ \triangle ABC $ & Dreieck mit Eckpunkten $ A, B, C $ \\
$ \overline { AB } \cong \overline { CD } $ & Die Strecken $ \overline { AB } $ und $ \overline { CD } $ sind isometrisch\\
$ |K| $ & Geometrische Realisierung des Simplizialkomplexes~$ K $ \\
\end { xtabular}
2014-01-21 22:02:38 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Gruppen %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section * { Gruppen}
2014-03-19 10:57:57 +01:00
Sei $ X $ ein topologischer Raum und $ K $ ein Körper.
\settowidth \mylengtha { $ \Homoo ( X ) $ }
\setlength \mylengthb { \dimexpr \columnwidth -\mylengtha -2\tabcolsep \relax }
\begin { xtabular} { @{ } p{ \mylengtha } P{ \mylengthb } @{ } }
$ \Homoo ( X ) $ & Homöomorphis\- men\- gruppe\\
$ \Iso ( X ) $ & Isometrien\- gruppe\\
$ \GL _ n ( K ) $ & Allgemeine lineare Gruppe (von \textit { \textbf { G} eneral \textbf { L} inear Group} )\\
$ \SL _ n ( K ) $ & Spezielle lineare Gruppe\\
$ \PSL _ n ( K ) $ & Projektive lineare Gruppe\\
$ \Perm ( X ) $ & Permutations\- gruppe\\
$ \Sym ( X ) $ & Symmetrische Gruppe\\
\end { xtabular}
2014-02-10 14:08:11 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-02-18 22:37:48 +01:00
% Wege %
2014-02-10 14:08:11 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section * { Wege}
2014-03-19 10:57:57 +01:00
Sei $ \gamma : I \rightarrow X $ ein Weg.
\settowidth \mylengtha { $ \gamma _ 1 \sim \gamma _ 2 $ }
\setlength \mylengthb { \dimexpr \columnwidth -\mylengtha -2\tabcolsep \relax }
\begin { xtabular} { @{ } p{ \mylengtha } P{ \mylengthb } @{ } }
$ [ \gamma ] $ & Homotopieklasse von $ \gamma $ \\
$ \gamma _ 1 * \gamma _ 2 $ & Zusammenhängen von Wegen\\
$ \gamma _ 1 \sim \gamma _ 2 $ & Homotopie von Wegen\\
$ \overline { \gamma } ( x ) $ & Inverser Weg, also $ \overline { \gamma } ( x ) : = \gamma ( 1 - x ) $ \\
$ C $ & Bild eines Weges $ \gamma $ , also $ C : = \gamma ( [ 0 , 1 ] ) $
\end { xtabular}
2013-11-29 21:47:59 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Weiteres %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-01-21 22:02:38 +01:00
\section * { Weiteres}
2014-03-19 10:57:57 +01:00
\settowidth \mylengtha { $ \fB _ \delta ( x ) $ }
\setlength \mylengthb { \dimexpr \columnwidth -\mylengtha -2\tabcolsep \relax }
\begin { xtabular} { @{ } p{ \mylengtha } P{ \mylengthb } @{ } }
$ \fB $ & Basis einer Topologie\\
$ \fB _ \delta ( x ) $ & $ \delta $ -Kugel um $ x $ \\
$ \calS $ & Subbasis einer Topologie\\
$ \fT $ & Topologie\\
\end { xtabular}
\settowidth \mylengtha { $ X / _ \sim $ }
\setlength \mylengthb { \dimexpr \columnwidth -\mylengtha -2\tabcolsep \relax }
\begin { xtabular} { @{ } p{ \mylengtha } P{ \mylengthb } @{ } }
$ \atlas $ & Atlas\\
$ \praum $ & Projektiver Raum\\
$ \langle \cdot , \cdot \rangle $ & Skalarprodukt\\
$ X / _ \sim $ & $ X $ modulo $ \sim $ \\
$ [ x ] _ \sim $ & Äquivalenzklassen von $ x $ bzgl. $ \sim $ \\
$ \| x \| $ & Norm von $ x $ \\
$ | x | $ & Betrag von $ x $ \\
$ \langle a \rangle $ & Erzeugnis von $ a $ \\
\end { xtabular}
2013-12-15 21:20:05 +01:00
2013-11-29 21:47:59 +01:00
$ S ^ n \; \; \; $ Sphäre\\
$ T ^ n \; \; \; $ Torus\\
2013-12-15 21:20:05 +01:00
2014-03-19 10:57:57 +01:00
\settowidth \mylengtha { $ f ^ { - 1 } ( M ) $ }
\setlength \mylengthb { \dimexpr \columnwidth -\mylengtha -2\tabcolsep \relax }
\begin { xtabular} { @{ } p{ \mylengtha } P{ \mylengthb } @{ } }
$ f \circ g $ & Verkettung von $ f $ und $ g $ \\
$ \pi _ X $ & Projektion auf $ X $ \\
$ f| _ U $ $ f $ & eingeschränkt auf $ U $ \\
$ f ^ { - 1 } ( M ) $ & Urbild von $ M $ \\
$ \rang ( M ) $ & Rang von $ M $ \\
$ \chi ( K ) $ & Euler-Charakteristik von $ K $ \\
$ \Delta ^ k $ & Standard-Simplex\\
$ X \# Y $ & Verklebung von $ X $ und $ Y $ \\
$ d _ n $ & Lineare Abbildung aus \cref { kor:9.11} \\
$ A \cong B $ & $ A $ ist isometrisch zu $ B $ \\
$ f _ * $ & Abbildung zwischen Fundamentalgruppen (vgl. \cpageref { korr:11.5} )
\end { xtabular}
2014-01-30 21:53:35 +01:00
\onecolumn
2013-12-22 16:27:58 +01:00
2014-01-31 13:49:37 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Zahlenmengen %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section * { Zahlenmengen}
2014-02-06 12:24:18 +01:00
$ \mdn = \Set { 1 , 2 , 3 , \dots } \; \; \; $ Natürliche Zahlen\\
$ \mdz = \mdn \cup \Set { 0 , - 1 , - 2 , \dots } \; \; \; $ Ganze Zahlen\\
2014-02-06 16:01:29 +01:00
$ \mdq = \mdz \cup \Set { \frac { 1 } { 2 } , \frac { 1 } { 3 } , \frac { 2 } { 3 } } = \Set { \frac { z } { n } \text { mit } z \in \mdz \text { und } n \in \mdz \setminus \Set { 0 } } \; \; \; $ Rationale Zahlen\\
2014-02-06 12:24:18 +01:00
$ \mdr = \mdq \cup \Set { \sqrt { 2 } , - \sqrt [ 3 ] { 3 } , \dots } \; \; \; $ Reele Zahlen\\
2014-02-18 11:05:58 +01:00
$ \mdr _ + \; $ Echt positive reele Zahlen\\
$ \mdr _ { + , 0 } ^ n : = \Set { ( x _ 1 , \dots , x _ n ) \in \mdr ^ n | x _ n \geq 0 } \; \; \; $ Halbraum\\
2014-02-06 12:24:18 +01:00
$ \mdr ^ \times = \mdr \setminus \Set { 0 } \; $ Einheitengruppe von $ \mdr $ \\
$ \mdc = \Set { a + ib|a,b \in \mdr } \; \; \; $ Komplexe Zahlen\\
$ \mdp = \Set { 2 , 3 , 5 , 7 , \dots } \; \; \; $ Primzahlen\\
$ \mdh = \Set { z \in \mdc | \Im { z } > 0 } \; \; \; $ obere Halbebene\\
2014-02-08 19:04:28 +01:00
$ I = [ 0 , 1 ] \subsetneq \mdr \; \; \; $ Einheitsintervall\\
2014-01-31 13:49:37 +01:00
2014-03-19 10:57:57 +01:00
\settowidth \mylengtha { $ f:S ^ 1 \hookrightarrow \mdr ^ 2 $ }
\setlength \mylengthb { \dimexpr \columnwidth -\mylengtha -2\tabcolsep \relax }
2014-01-12 23:08:45 +01:00
2014-03-19 10:57:57 +01:00
\begin { xtabular} { @{ } p{ \mylengtha } P{ \mylengthb } @{ } }
$ f:S ^ 1 \hookrightarrow \mdr ^ 2 $ & Einbettung der Kreislinie in die Ebene\\
$ \pi _ 1 ( X,x ) $ & Fundamentalgruppe im topologischen Raum $ X $ um $ x \in X $ \\
$ \Fix ( f ) $ & Menge der Fixpunkte der Abbildung $ f $ \\
$ \| \cdot \| _ 2 $ & 2-Norm; Euklidische Norm\\
$ \kappa $ & Krümmung\\
$ \kappa _ { \ts { Nor } } $ & Normalenkrümmung\\
$ V ( f ) $ & Nullstellenmenge von $ f $ \footnotemark
\end { xtabular}
\footnotetext { von \textit { \textbf { V} anishing Set} }
2014-02-18 22:37:48 +01:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Krümmung %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section * { Krümmung}
2014-03-19 10:57:57 +01:00
\settowidth \mylengtha { $ D _ p F: \mdr ^ 2 \rightarrow \mdr ^ 3 $ }
\setlength \mylengthb { \dimexpr \columnwidth -\mylengtha -2\tabcolsep \relax }
\begin { xtabular} { @{ } p{ \mylengtha } P{ \mylengthb } @{ } }
$ D _ p F: \mdr ^ 2 \rightarrow \mdr ^ 3 $ & Lineare Abbildung mit Jacobi-Matrix in $ p $ (siehe \cpageref { def:Tangentialebene} )\\
$ T _ s S $ & Tangentialebene an $ S \subseteq \mdr ^ 3 $ durch $ s \in S $ \\
$ d _ s n ( x ) $ & Weingarten-Abbildung\\
\end { xtabular}
2014-02-18 22:37:48 +01:00
2014-01-12 23:08:45 +01:00
\index { Faser|see{ Urbild} }
2014-01-25 00:22:50 +01:00
\index { kongruent|see{ isometrisch} }
2014-02-19 21:12:33 +01:00
\index { Kongruenz|see{ Isometrie} }