2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-24 22:08:04 +02:00

Merge pull request #28 from steohan/master

Kleine änderungen an Aufgabe4 Klausur1
This commit is contained in:
Martin Thoma 2013-09-19 07:42:31 -07:00
commit a1ef1a4c27

View file

@ -31,6 +31,13 @@ Nun integrieren wir das Interpolationspolynom:
\[ = \int_a^b \frac{f(a) \cdot x}{a-b}dx - \int_a^b \frac{f(a) \cdot b}{a-b}dx + \int_a^b \frac{f(b) \cdot x}{b-a}dx - \int_a^b \frac{f(b) \cdot a}{b-a}dx \]
\[ = \frac{1}{2} \cdot \frac{f(a) \cdot b^2}{a-b} - \frac{1}{2} \cdot \frac{f(a) \cdot a^2}{a-b} - \frac{f(a) \cdot b^2}{a-b} + \frac{f(a) \cdot b \cdot a}{a-b} + \frac{1}{2} \cdot \frac{f(b) \cdot b^2}{b-a} \]
\[ - \frac{1}{2} \cdot \frac{f(b) \cdot a^2}{b-a} - \frac{f(b) \cdot a \cdot b}{b-a} + \frac{f(b) \cdot a^2}{b-a}\]
\[=(b-a)\cdot(\frac{f(a)}{2} + \frac{f(b)}{2})\]
Betrachtet man nun die allgemeine Quadraturformel,
\[
\int_a^b f(x)dx \approx (b-a) \sum_{i=1}^s b_i f(a+c_i(b-a))
\]
so gilt für die hergeleitete Quadraturformel also $s=2$, $c_1=0, c_2=1$ und $b_1 = b_2 = \frac{1}{2}$. Sie entspricht damit der Trapezregel.
\subsection*{Teilaufgabe b)}
Sei nun $f(x) = x^2$ und $a = 0$ sowie $b = 4$. Man soll die ermittelte