mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
113 lines
3.4 KiB
TeX
113 lines
3.4 KiB
TeX
\documentclass[a4paper,10pt]{article}
|
|
\usepackage{amssymb, amsmath}
|
|
\DeclareMathOperator{\arcsinh}{arcsinh}
|
|
\DeclareMathOperator{\arccosh}{arccosh}
|
|
\DeclareMathOperator{\arctanh}{arctanh}
|
|
\usepackage[utf8]{inputenc} % this is needed for umlauts
|
|
\usepackage[ngerman]{babel} % this is needed for umlauts
|
|
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
|
%layout
|
|
\usepackage[margin=2.5cm]{geometry}
|
|
\usepackage{parskip}
|
|
|
|
\pdfinfo{
|
|
/Author (Peter Merkert, Martin Thoma)
|
|
/Title (Wichtige Formeln der Analysis I)
|
|
/CreationDate (D:20120221095400)
|
|
/Subject (Analysis I)
|
|
/Keywords (Analysis I; Formeln)
|
|
}
|
|
|
|
%\everymath={\displaystyle}
|
|
|
|
\begin{document}
|
|
|
|
\title{Analysis Formelsammlung}
|
|
\author{Peter Merkert, Martin Thoma}
|
|
\date{21. Februar 2012}
|
|
|
|
\section{Grenzwerte}
|
|
\begin{table}[ht]
|
|
\begin{minipage}[b]{0.5\linewidth}\centering
|
|
|
|
\begin{align*}
|
|
\lim_{x \to 0} \frac {\sin x}{x} &= 1 \\
|
|
\lim_{x \to 0} \frac {e^x - 1}{x} &= 1 \\
|
|
\lim_{h \to 0} \frac {e^{{x_0} + h} - e^{x_0}}{h} &= e^{x_0} \\
|
|
\sum_{n = 0}^{\infty} (-1)^n \frac {(-1)^{n + 1}}{n} &= \log 2 \\
|
|
\cos x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n}}{(2n)!} \\
|
|
\sin x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n + 1}}{(2n + 1)!}
|
|
\end{align*}
|
|
|
|
\end{minipage}
|
|
\hspace{0.5cm}
|
|
\begin{minipage}[b]{0.5\linewidth}
|
|
\centering
|
|
|
|
\begin{align*}
|
|
\cosh x = \frac {1}{2} (e^x + e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n}}{(2n)!} \\
|
|
\sinh x = \frac {1}{2} (e^x - e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n + 1}}{(2n + 1)!} \\
|
|
e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} = \lim_{n\to\infty} \left (1+\frac{x}{n} \right )^n\\
|
|
\sum_{n = 0}^{\infty} (-1)^n \frac {x^{n + 1}}{n + 1} &= \log (1+x) \; x \in (-1,1) \\
|
|
\sum_{n = 0}^{\infty} x^n &= \frac {1}{1 - x} (x \in (-1,1)) \\
|
|
0,\bar{3} &= \sum_{n = 1}^{\infty} \frac {3}{(10)^n}
|
|
\end{align*}
|
|
|
|
\end{minipage}
|
|
\end{table}
|
|
|
|
\section{Zusammenhänge}
|
|
\begin{align*}
|
|
(\cos x)^2 + (\sin x)^2 &= 1 \\
|
|
(\cosh x)^2 - (\sinh x)^2 &= 1 \\
|
|
\tan x &= \frac {\sin x}{\cos x} \\
|
|
\tanh x &= \frac {\sinh x}{\cosh x} \\
|
|
(x + y)^n &= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k
|
|
\end{align*}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Ableitungen}
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\begin{table}[ht]
|
|
\begin{minipage}[b]{0.3\linewidth}\centering
|
|
\begin{align*}
|
|
(\sin x)' &= \cos x \\
|
|
(\cos x)' &= -\sin x \\
|
|
(\tan x)' &= \frac{1}{\cos^2 x} \\
|
|
(\sinh x)' &= \cosh x \\
|
|
(\cosh x)' &= \sinh x \\
|
|
\end{align*}
|
|
|
|
\end{minipage}
|
|
\hspace{0.1cm}
|
|
\begin{minipage}[b]{0.3\linewidth}
|
|
\centering
|
|
|
|
\begin{align*}
|
|
(\arcsin x)' &= \frac {1}{\sqrt{1-x^2}} \\
|
|
(\arccos x)' &= - \frac {1}{\sqrt{1-x^2}} \\
|
|
(\arctan x)' &= \frac {1}{1 + x^2} \\
|
|
% (\arcsinh x)' &= \frac {1}{\sqrt{1+x^2}} \\
|
|
% (\arccosh x)' &= \frac {1}{\sqrt{(1-x^2) \cdot (1+x^2)}} \\
|
|
% (\arctanh x)' &= \frac {1}{1 - x^2}
|
|
\end{align*}
|
|
\end{minipage}
|
|
\hspace{0.1cm}
|
|
\begin{minipage}[b]{0.3\linewidth}
|
|
\centering
|
|
\begin{align*}
|
|
(\log x)' &= \frac{1}{x} \\
|
|
\end{align*}
|
|
\end{minipage}
|
|
\end{table}
|
|
|
|
\section{Werte}
|
|
\begin{table}[h]
|
|
\centering
|
|
\begin{tabular}{llll}
|
|
\(\arctan(0) = 0\) & \(\sin(0) = 0\) & \(\cos(0) = 1\) \\
|
|
\(\arctan(1) = \frac{\pi}{4}\) & \(\sin(\frac{\pi}{2}) = 1\) & \(\cos(\frac{\pi}{2}) = 0\)\\
|
|
\end{tabular}
|
|
\end{table}
|
|
|
|
\end{document}
|