mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
added argument why there is no closed form solution
This commit is contained in:
parent
ba59e009cf
commit
fb0c7e39cb
2 changed files with 29 additions and 6 deletions
|
@ -5,4 +5,4 @@ make:
|
|||
make clean
|
||||
|
||||
clean:
|
||||
rm -rf $(TARGET) *.class *.log *.aux *.out
|
||||
rm -rf $(TARGET) *.class *.log *.aux *.out *.thm
|
||||
|
|
|
@ -23,6 +23,8 @@
|
|||
\theoremheaderfont{\kern-0.7cm\normalfont\bfseries}
|
||||
\theorembodyfont{\normalfont} % nicht mehr kursiv
|
||||
|
||||
\def\mdr{\ensuremath{\mathbb{R}}}
|
||||
|
||||
\newframedtheorem{theorem}{Theorem}
|
||||
\newframedtheorem{lemma}[theorem]{Lemma}
|
||||
\newtheorem{plaindefinition}{Definition}
|
||||
|
@ -418,14 +420,35 @@ take the same approach as in Equation \ref{eq:minimizingFirstDerivative}:
|
|||
0 &\stackrel{!}{=} -2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\
|
||||
&= 2 f(x) \cdot f'(x) - 2 y_p f'(x) + 2x - 2 x_p\\
|
||||
&= f(x) \cdot f'(x) - y_p f'(x) + x - x_p\\
|
||||
&= \underbrace{f'(x) \cdot \left (f(x) - y_p \right )}_{\text{Polynomial of degree 5}} + \underbrace{x - x_p}_{\text{:-(}}
|
||||
&= \underbrace{f'(x) \cdot \left (f(x) - y_p \right )}_{\text{Polynomial of degree 5}} + x - x_p
|
||||
\end{align}
|
||||
|
||||
\todo[inline]{Although general algebraic equations of degree 5 don't
|
||||
have a solution formula, the special structure might give the
|
||||
possibilty to find a closed form solution. But I don't know how.
|
||||
General algebraic equations of degree 5 don't have a solution formula.\footnote{TODO: Quelle}
|
||||
Although here seems to be more structure, the resulting algebraic
|
||||
equation can be almost any polynomial of degree 5:\footnote{Thanks to Peter Košinár on \href{http://math.stackexchange.com/a/584814/6876}{math.stackexchange.com} for this one}
|
||||
|
||||
This is a first-order nonlinear ordinary differential equation - does this help?}
|
||||
\begin{align}
|
||||
0 &\stackrel{!}{=} f'(x) \cdot \left (f(x) - y_p \right ) + (x - x_p)\\
|
||||
&= \underbrace{3 a^2}_{= \tilde{a}} x^5 + \underbrace{5ab}_{\tilde{b}}x^4 + \underbrace{2(2ac + b^2 )}_{=: \tilde{c}}x^3 &+& \underbrace{3(ad+bc-ay_p)}_{\tilde{d}} x^2 \\
|
||||
& &+& \underbrace{(2 b d+c^2+1-2 b y_p)}_{=: \tilde{e}}x+\underbrace{c d-c y_p-x_p}_{=: \tilde{f}}\\
|
||||
0 &\stackrel{!}{=} \tilde{a}x^5 + \tilde{b}x^4 + \tilde{c}x^3 + \tilde{d}x^2 + \tilde{e}x + \tilde{f}
|
||||
\end{align}
|
||||
|
||||
\begin{enumerate}
|
||||
\item With $a$, we can get any value of $\tilde{a} \in \mdr \setminus \Set{0}$.
|
||||
\item With $b$, we can get any value of $\tilde{b} \in \mdr \setminus \Set{0}$.
|
||||
\item With $c$, we can get any value of $\tilde{c} \in \mdr$.
|
||||
\item With $d$, we can get any value of $\tilde{d} \in \mdr$.
|
||||
\item With $y_p$, we can get any value of $\tilde{e} \in \mdr$.
|
||||
\item With $x_p$, we can get any value of $\tilde{f} \in \mdr$.
|
||||
\end{enumerate}
|
||||
|
||||
The first restriction only guaratees that we have a polynomial of
|
||||
degree 5. The second one is necessary, to get a high range of
|
||||
$\tilde{e}$.
|
||||
|
||||
This means, that there is no solution formula for the problem of
|
||||
finding the closest points on a cubic function to a given point.
|
||||
|
||||
\subsection{Number of points with minimal distance}
|
||||
As there is an algebraic equation of degree 5, there cannot be more
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue