2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-25 06:18:05 +02:00
This commit is contained in:
Martin Thoma 2013-11-13 08:50:04 +01:00
parent 21e8385bf9
commit d2debc0e68

View file

@ -1,5 +1,6 @@
\documentclass[a4paper]{scrartcl}
\usepackage{amssymb, amsmath} % needed for math
\usepackage{mathtools} % \xRightarrow
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[english]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
@ -224,6 +225,53 @@ But can there be three points?
\todo[inline]{Is this possible? http://math.stackexchange.com/q/553097/6876}
\end{figure}
As the point is already given, you want to minimize the following
function:
\begin{align}
d: &\mdr \rightarrow \mdr^+_0\\
d(x) &= \sqrt{(x_p,y_p),(x,f(x))}\\
&= \sqrt{(x_p-x)^2 + (y_p - f(x))^2}\\
&= \sqrt{x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2}
\end{align}
Minimizing $d$ is the same as minimizing $d^2$:
\begin{align}
d(x)^2 &= x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2\\
(d(x)^2)' &= -2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\
0 &\stackrel{!}{=} -2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'
\end{align}
Now we use thet $f(x) = ax^2 + bx + c$:
\begin{align}
0 &\stackrel{!}{=} -2 x_p + 2x -2y_p(2ax+b) + ((ax^2+bx+c)^2)'\\
&= -2 x_p + 2x -2y_p \cdot 2ax-2 y_p b + (a^2 x^4+2 a b x^3+2 a c x^2+b^2 x^2+2 b c x+c^2)'\\
&= -2 x_p + 2x -4y_p ax-2 y_p b + (4a^2 x^3 + 6 ab x^2 + 4acx + 2b^2 x + 2bc)\\
&= 4a^2 x^3 + 6 ab x^2 + 2(1 -2y_p a+ 2ac + b^2)x +2(bc-by_p-x_p)\\
\end{align}
\subsubsection{Solutions}
As the problem stated above is a cubic equation, you can solved it
analytically. But the solutions are not very nice, so I've entered
\texttt{$0=4*a^2 *x^3 + 6 *a*b *x^2 + 2*(1 -2*e *a+ 2*a*c + b^2)*x +2*(b*c-b*e-d)$}
with $d := x_p$ and $e := y_p$.
to \href{http://www.wolframalpha.com/input/?i=0%3D4*a%5E2+*x%5E3+%2B+6+*a*b+*x%5E2+%2B+2*%281+-2*e+*a%2B+2*a*c+%2B+b%5E2%29*x+%2B2*%28b*c-b*e-d%29}{WolframAlpha} to let it solve. The solutions are:
\textbf{First solution}
\begin{align*}
x = &\frac{1}{6 \sqrt[3]{2} a^2} \sqrt[3]{(108 a^4 d+54 a^3 b+\sqrt{(108 a^4 d+54 a^3 b)^2+4 (12 a^3 c-12 a^3 e-3 a^2 b^2+6 a^2)^3})}\\
&-\frac{12 a^3 c-12 a^3 e-3 a^2 b^2+6 a^2}
{3 (2^{\frac{2}{3}}) a^2 \sqrt[3]{108 a^4 d+54 a^3 b+\sqrt{(108 a^4 d+54 a^3 b)^2+4 (12 a^3 c-12 a^3 e-3 a^2 b^2+6 a^2)^3}} }-b/(2 a)
\end{align*}
So the minimum for $a=1, b=c=d=0$ is:
\subsection{Calculate points with minimal distance}
\todo[inline]{Write this}
@ -232,6 +280,7 @@ Let $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ with $a \in \mdr \setminu
$b, c, d \in \mdr$ be a function.
\subsection{Number of points with minimal distance}
\todo[inline]{Write this}
\subsection{Special points}