diff --git a/documents/math-minimal-distance-to-cubic-function/math-minimal-distance-to-cubic-function.tex b/documents/math-minimal-distance-to-cubic-function/math-minimal-distance-to-cubic-function.tex index fd12de3..d50b501 100644 --- a/documents/math-minimal-distance-to-cubic-function/math-minimal-distance-to-cubic-function.tex +++ b/documents/math-minimal-distance-to-cubic-function/math-minimal-distance-to-cubic-function.tex @@ -1,5 +1,6 @@ \documentclass[a4paper]{scrartcl} \usepackage{amssymb, amsmath} % needed for math +\usepackage{mathtools} % \xRightarrow \usepackage[utf8]{inputenc} % this is needed for umlauts \usepackage[english]{babel} % this is needed for umlauts \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf @@ -224,6 +225,53 @@ But can there be three points? \todo[inline]{Is this possible? http://math.stackexchange.com/q/553097/6876} \end{figure} +As the point is already given, you want to minimize the following +function: + +\begin{align} + d: &\mdr \rightarrow \mdr^+_0\\ + d(x) &= \sqrt{(x_p,y_p),(x,f(x))}\\ + &= \sqrt{(x_p-x)^2 + (y_p - f(x))^2}\\ + &= \sqrt{x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2} +\end{align} + +Minimizing $d$ is the same as minimizing $d^2$: +\begin{align} + d(x)^2 &= x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2\\ + (d(x)^2)' &= -2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\ + 0 &\stackrel{!}{=} -2 x_p + 2x -2y_p(f(x))' + (f(x)^2)' +\end{align} + +Now we use thet $f(x) = ax^2 + bx + c$: + +\begin{align} + 0 &\stackrel{!}{=} -2 x_p + 2x -2y_p(2ax+b) + ((ax^2+bx+c)^2)'\\ + &= -2 x_p + 2x -2y_p \cdot 2ax-2 y_p b + (a^2 x^4+2 a b x^3+2 a c x^2+b^2 x^2+2 b c x+c^2)'\\ + &= -2 x_p + 2x -4y_p ax-2 y_p b + (4a^2 x^3 + 6 ab x^2 + 4acx + 2b^2 x + 2bc)\\ + &= 4a^2 x^3 + 6 ab x^2 + 2(1 -2y_p a+ 2ac + b^2)x +2(bc-by_p-x_p)\\ +\end{align} + +\subsubsection{Solutions} +As the problem stated above is a cubic equation, you can solved it +analytically. But the solutions are not very nice, so I've entered + +\texttt{$0=4*a^2 *x^3 + 6 *a*b *x^2 + 2*(1 -2*e *a+ 2*a*c + b^2)*x +2*(b*c-b*e-d)$} + +with $d := x_p$ and $e := y_p$. + +to \href{http://www.wolframalpha.com/input/?i=0%3D4*a%5E2+*x%5E3+%2B+6+*a*b+*x%5E2+%2B+2*%281+-2*e+*a%2B+2*a*c+%2B+b%5E2%29*x+%2B2*%28b*c-b*e-d%29}{WolframAlpha} to let it solve. The solutions are: + +\textbf{First solution} + +\begin{align*} + x = &\frac{1}{6 \sqrt[3]{2} a^2} \sqrt[3]{(108 a^4 d+54 a^3 b+\sqrt{(108 a^4 d+54 a^3 b)^2+4 (12 a^3 c-12 a^3 e-3 a^2 b^2+6 a^2)^3})}\\ + &-\frac{12 a^3 c-12 a^3 e-3 a^2 b^2+6 a^2} + {3 (2^{\frac{2}{3}}) a^2 \sqrt[3]{108 a^4 d+54 a^3 b+\sqrt{(108 a^4 d+54 a^3 b)^2+4 (12 a^3 c-12 a^3 e-3 a^2 b^2+6 a^2)^3}} }-b/(2 a) +\end{align*} + +So the minimum for $a=1, b=c=d=0$ is: + + \subsection{Calculate points with minimal distance} \todo[inline]{Write this} @@ -232,6 +280,7 @@ Let $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ with $a \in \mdr \setminu $b, c, d \in \mdr$ be a function. \subsection{Number of points with minimal distance} + \todo[inline]{Write this} \subsection{Special points}