mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-25 06:18:05 +02:00
moved argument to the correct location; consistency for titles; added proof to theorem (only two solutions for quadratic problem)
This commit is contained in:
parent
dc82db6336
commit
bdf8bbca3d
5 changed files with 40 additions and 11 deletions
|
@ -116,3 +116,11 @@ The point with minimum distance can be found by:
|
||||||
\Set{a} &\text{if } S_0(f,P) \ni x_P < a\\
|
\Set{a} &\text{if } S_0(f,P) \ni x_P < a\\
|
||||||
\Set{b} &\text{if } S_0(f,P) \ni x_P > b
|
\Set{b} &\text{if } S_0(f,P) \ni x_P > b
|
||||||
\end{cases}\]
|
\end{cases}\]
|
||||||
|
|
||||||
|
Because:
|
||||||
|
\begin{align}
|
||||||
|
\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} &= \underset{x\in[a,b]}{\arg \min d_{P,f}(x)^2}\\
|
||||||
|
&=\underset{x\in[a,b]}{\arg \min} x^2 - 2x_P x + (x_P^2 + y_P^2 - 2 y_P c + c^2)\\
|
||||||
|
&=\underset{x\in[a,b]}{\arg \min} x^2 - 2 x_P x + x_P^2\\
|
||||||
|
&=\underset{x\in[a,b]}{\arg \min} (x-x_P)^2
|
||||||
|
\end{align}
|
||||||
|
|
|
@ -216,4 +216,4 @@ initial guess.
|
||||||
\todo[inline]{TODO}
|
\todo[inline]{TODO}
|
||||||
\clearpage
|
\clearpage
|
||||||
|
|
||||||
\section{Defined on a closed interval of $\mdr$}
|
\section{Defined on a closed interval $[a,b] \subseteq \mdr$}
|
||||||
|
|
|
@ -29,6 +29,8 @@ $t \in \mdr$ be a linear function.
|
||||||
\addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
|
\addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
|
||||||
\addplot[domain=-5:5, thick,samples=50, blue] {-2*x+6};
|
\addplot[domain=-5:5, thick,samples=50, blue] {-2*x+6};
|
||||||
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
|
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
|
||||||
|
\addplot[blue, nodes near coords=$f_\bot$,every node near coord/.style={anchor=225}] coordinates {(1.5, 3)};
|
||||||
|
\addplot[red, nodes near coords=$f$,every node near coord/.style={anchor=225}] coordinates {(0.9, 0.5)};
|
||||||
\addlegendentry{$f(x)=\frac{1}{2}x$}
|
\addlegendentry{$f(x)=\frac{1}{2}x$}
|
||||||
\addlegendentry{$f_\bot(x)=-2x+6$}
|
\addlegendentry{$f_\bot(x)=-2x+6$}
|
||||||
\end{axis}
|
\end{axis}
|
||||||
|
@ -115,10 +117,4 @@ The point with minimum distance can be found by:
|
||||||
\Set{b} &\text{if } S_1(f, P) \ni x > b
|
\Set{b} &\text{if } S_1(f, P) \ni x > b
|
||||||
\end{cases}\]
|
\end{cases}\]
|
||||||
|
|
||||||
Because:
|
\todo[inline]{argument? proof?}
|
||||||
\begin{align}
|
|
||||||
\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} &= \underset{x\in[a,b]}{\arg \min d_{P,f}(x)^2}\\
|
|
||||||
&=\underset{x\in[a,b]}{\arg \min} x^2 - 2x_P x + (x_P^2 + y_P^2 - 2 y_P c + c^2)\\
|
|
||||||
&=\underset{x\in[a,b]}{\arg \min} x^2 - 2 x_P x + x_P^2\\
|
|
||||||
&=\underset{x\in[a,b]}{\arg \min} (x-x_P)^2\\
|
|
||||||
\end{align}
|
|
||||||
|
|
Binary file not shown.
|
@ -80,6 +80,7 @@ As you can easily verify, only $x_1$ is a minimum of $d_{P,f}$.
|
||||||
quadratic function $f$ that are closest to $P$.
|
quadratic function $f$ that are closest to $P$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
In the following, I will do some transformations with $f = f_0$ and
|
In the following, I will do some transformations with $f = f_0$ and
|
||||||
$P = P_0$ .
|
$P = P_0$ .
|
||||||
|
|
||||||
|
@ -107,7 +108,7 @@ to add $+1$.}
|
||||||
Then move $f_1$ and $P_1$ by $\frac{b^2}{4a}-c$ in $y$ direction. You get:
|
Then move $f_1$ and $P_1$ by $\frac{b^2}{4a}-c$ in $y$ direction. You get:
|
||||||
\[f_2(x) = ax^2\;\;\;\text{ and }\;\;\; P_2 = \Big (\underbrace{x_P+\frac{b}{2a}}_{=: z},\;\; \underbrace{y_P+\frac{b^2}{4a}-c}_{=: w} \Big )\]
|
\[f_2(x) = ax^2\;\;\;\text{ and }\;\;\; P_2 = \Big (\underbrace{x_P+\frac{b}{2a}}_{=: z},\;\; \underbrace{y_P+\frac{b^2}{4a}-c}_{=: w} \Big )\]
|
||||||
|
|
||||||
\textbf{Case 1:} As $f_2(x) = ax^2$ is symmetric to the $y$ axis, only points
|
As $f_2(x) = ax^2$ is symmetric to the $y$ axis, only points
|
||||||
$P = (0, w)$ could possilby have three minima.
|
$P = (0, w)$ could possilby have three minima.
|
||||||
|
|
||||||
Then compute:
|
Then compute:
|
||||||
|
@ -125,6 +126,18 @@ The term
|
||||||
should get as close to $0$ as possilbe when we want to minimize
|
should get as close to $0$ as possilbe when we want to minimize
|
||||||
$d_{P,{f_2}}$. For $w \leq \nicefrac{1}{2a}$ you only have $x = 0$ as a minimum.
|
$d_{P,{f_2}}$. For $w \leq \nicefrac{1}{2a}$ you only have $x = 0$ as a minimum.
|
||||||
For all other points $P = (0, w)$, there are exactly two minima $x_{1,2} = \pm \sqrt{aw - \nicefrac{1}{2}}$.
|
For all other points $P = (0, w)$, there are exactly two minima $x_{1,2} = \pm \sqrt{aw - \nicefrac{1}{2}}$.
|
||||||
|
$\qed$
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{Solution formula}
|
||||||
|
We start with the graph that was moved so that $f_2 = ax^2$.
|
||||||
|
|
||||||
|
\textbf{Case 1:} $P$ is on the symmetry axis, hence $x_P = - \frac{b}{2a}$.
|
||||||
|
|
||||||
|
In this case, we have already found the solution. If $y_P + \frac{b^2}{4a} - c > \frac{1}{2a}$,
|
||||||
|
then there are two solutions:
|
||||||
|
\[x_{1,2} = \pm \sqrt{aw - \nicefrac{1}{2}}\]
|
||||||
|
Otherwise, there is only one solution $x_1 = 0$.
|
||||||
|
|
||||||
\textbf{Case 2:} $P = (z, w)$ is not on the symmetry axis, so $z \neq 0$. Then you compute:
|
\textbf{Case 2:} $P = (z, w)$ is not on the symmetry axis, so $z \neq 0$. Then you compute:
|
||||||
\begin{align}
|
\begin{align}
|
||||||
|
@ -140,10 +153,12 @@ For all other points $P = (0, w)$, there are exactly two minima $x_{1,2} = \pm \
|
||||||
&= x^3 + \alpha x + \beta\label{eq:simple-cubic-equation-for-quadratic-distance}
|
&= x^3 + \alpha x + \beta\label{eq:simple-cubic-equation-for-quadratic-distance}
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
|
Let $t$ be defined as
|
||||||
|
\[t := \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\]
|
||||||
|
|
||||||
|
\textbf{Case 2.1:} $4 \alpha^3 + 27 \beta^2 \geq 0$:
|
||||||
The solution of Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
|
The solution of Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
|
||||||
is
|
is
|
||||||
\todo[inline]{Can $4 \alpha^3 + 27 \beta^2$ be negative for $\alpha=\frac{1-2aw}{2a^2}$ and $\beta = \frac{-z}{2a^2}$?}
|
|
||||||
\[t := \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\]
|
|
||||||
\[x = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}\]
|
\[x = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}\]
|
||||||
|
|
||||||
When you insert this in Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
|
When you insert this in Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
|
||||||
|
@ -190,6 +205,16 @@ $t$:
|
||||||
&= 0
|
&= 0
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
|
\textbf{Case 2.2:} TODO
|
||||||
|
|
||||||
|
\[x = \frac{(1+i \sqrt{3})a}{\sqrt[3]{12} \cdot t}
|
||||||
|
-\frac{(1-i\sqrt{3}) t}{2\sqrt[3]{18}}\]
|
||||||
|
|
||||||
|
\textbf{Case 2.3:} TODO
|
||||||
|
|
||||||
|
\[x = \frac{(1-i \sqrt{3})a}{\sqrt[3]{12} \cdot t}
|
||||||
|
-\frac{(1+i\sqrt{3}) t}{2\sqrt[3]{18}}\]
|
||||||
|
|
||||||
\goodbreak
|
\goodbreak
|
||||||
So the solution is given by
|
So the solution is given by
|
||||||
\todo[inline]{NO! Currently, there are erros in the solution.
|
\todo[inline]{NO! Currently, there are erros in the solution.
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue