2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-19 11:38:05 +02:00
This commit is contained in:
Martin Thoma 2013-12-16 10:51:15 +01:00
parent 1a8f76a056
commit dc82db6336
4 changed files with 28 additions and 6 deletions

View file

@ -1,6 +1,7 @@
\chapter{Constant functions}
\section{Defined on $\mdr$}
Let $f:\mdr \rightarrow \mdr$, $f(x) := c$ with $c \in \mdr$ be a constant function.
The situation can be seen in Figure~\ref{fig:constant-min-distance}.
\begin{figure}[htp]
\centering
@ -42,11 +43,21 @@ Let $f:\mdr \rightarrow \mdr$, $f(x) := c$ with $c \in \mdr$ be a constant funct
\label{fig:constant-min-distance}
\end{figure}
\begin{align}
d_{P,f}(x) &= \sqrt{(x_P - x)^2 + (y_P - f(x))^2}\\
&= \sqrt{(x_P^2 - 2x_P x + x^2) + (y_P^2 - 2 y_P c + c^2)} \\
&= \sqrt{x^2 - 2 x_P x + (x_P^2 + y_P^2 - 2 y_P c + c^2)}\label{eq:constant-function-distance}\\
\xRightarrow{\text{Theorem}~\ref{thm:fermats-theorem}} 0 &\stackrel{!}{=} (d_{P,f}(x)^2)'\\
&= 2x - 2x_P\\
\Leftrightarrow x &\stackrel{!}{=} x_P
\end{align}
Then $(x_P,f(x_P))$ has
minimal distance to $P$. Every other point has higher distance.
See Figure~\ref{fig:constant-min-distance}.
See Figure~\ref{fig:constant-min-distance} to see that intuition
yields to the same results.
This means:
This result means:
\[S_0(f, P) = \Set{x_P} \text{ with } P = (x_P, y_P)\]
\clearpage

View file

@ -109,8 +109,16 @@ $a \leq b$, $m \neq 0$ be a linear function.
\end{figure}
The point with minimum distance can be found by:
\[\underset{x\in\mdr}{\arg \min d_{P,f}(x)} = \begin{cases}
\[\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} = \begin{cases}
S_1(f, P) &\text{if } S_1(f, P) \cap [a,b] \neq \emptyset\\
\Set{a} &\text{if } S_1(f, P) \ni x < a\\
\Set{b} &\text{if } S_1(f, P) \ni x > b
\end{cases}\]
Because:
\begin{align}
\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} &= \underset{x\in[a,b]}{\arg \min d_{P,f}(x)^2}\\
&=\underset{x\in[a,b]}{\arg \min} x^2 - 2x_P x + (x_P^2 + y_P^2 - 2 y_P c + c^2)\\
&=\underset{x\in[a,b]}{\arg \min} x^2 - 2 x_P x + x_P^2\\
&=\underset{x\in[a,b]}{\arg \min} (x-x_P)^2\\
\end{align}

View file

@ -11,16 +11,19 @@ Now there is finite set $M = \Set{x_1, \dots, x_n} \subseteq D$ of minima for gi
But minimizing $d_{P,f}$ is the same as minimizing
$d_{P,f}^2 = x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2$.
\begin{theorem}[Fermat's theorem about stationary points]\label{thm:required-extremum-property}
In order to solve the minimal distance problem, Fermat's theorem
about stationary points will be tremendously usefull:
\begin{theorem}[Fermat's theorem about stationary points]\label{thm:fermats-theorem}
Let $x_0$ be a local extremum of a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$.
Then: $f'(x_0) = 0$.
\end{theorem}
Let $S_n$ be the function that returns the set of solutions for a
polynomial of degree $n$ and a point:
polynomial $f$ of degree $n$ and a point $P$:
\[S_n: \Set{\text{Polynomials of degree } n \text{ defined on } \mdr} \times \mdr^2 \rightarrow \mathcal{P}({\mdr})\]
\[S_n(f, P) := \underset{x\in\mdr}{\arg \min d_{P,f}(x)}\]
\[S_n(f, P) := \underset{x\in\mdr}{\arg \min d_{P,f}(x)} = M\]
If possible, I will explicitly give this function.