mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
misc
This commit is contained in:
parent
1a8f76a056
commit
dc82db6336
4 changed files with 28 additions and 6 deletions
|
@ -1,6 +1,7 @@
|
|||
\chapter{Constant functions}
|
||||
\section{Defined on $\mdr$}
|
||||
Let $f:\mdr \rightarrow \mdr$, $f(x) := c$ with $c \in \mdr$ be a constant function.
|
||||
The situation can be seen in Figure~\ref{fig:constant-min-distance}.
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
|
@ -42,11 +43,21 @@ Let $f:\mdr \rightarrow \mdr$, $f(x) := c$ with $c \in \mdr$ be a constant funct
|
|||
\label{fig:constant-min-distance}
|
||||
\end{figure}
|
||||
|
||||
\begin{align}
|
||||
d_{P,f}(x) &= \sqrt{(x_P - x)^2 + (y_P - f(x))^2}\\
|
||||
&= \sqrt{(x_P^2 - 2x_P x + x^2) + (y_P^2 - 2 y_P c + c^2)} \\
|
||||
&= \sqrt{x^2 - 2 x_P x + (x_P^2 + y_P^2 - 2 y_P c + c^2)}\label{eq:constant-function-distance}\\
|
||||
\xRightarrow{\text{Theorem}~\ref{thm:fermats-theorem}} 0 &\stackrel{!}{=} (d_{P,f}(x)^2)'\\
|
||||
&= 2x - 2x_P\\
|
||||
\Leftrightarrow x &\stackrel{!}{=} x_P
|
||||
\end{align}
|
||||
|
||||
Then $(x_P,f(x_P))$ has
|
||||
minimal distance to $P$. Every other point has higher distance.
|
||||
See Figure~\ref{fig:constant-min-distance}.
|
||||
See Figure~\ref{fig:constant-min-distance} to see that intuition
|
||||
yields to the same results.
|
||||
|
||||
This means:
|
||||
This result means:
|
||||
|
||||
\[S_0(f, P) = \Set{x_P} \text{ with } P = (x_P, y_P)\]
|
||||
\clearpage
|
||||
|
|
|
@ -109,8 +109,16 @@ $a \leq b$, $m \neq 0$ be a linear function.
|
|||
\end{figure}
|
||||
|
||||
The point with minimum distance can be found by:
|
||||
\[\underset{x\in\mdr}{\arg \min d_{P,f}(x)} = \begin{cases}
|
||||
\[\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} = \begin{cases}
|
||||
S_1(f, P) &\text{if } S_1(f, P) \cap [a,b] \neq \emptyset\\
|
||||
\Set{a} &\text{if } S_1(f, P) \ni x < a\\
|
||||
\Set{b} &\text{if } S_1(f, P) \ni x > b
|
||||
\end{cases}\]
|
||||
|
||||
Because:
|
||||
\begin{align}
|
||||
\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} &= \underset{x\in[a,b]}{\arg \min d_{P,f}(x)^2}\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} x^2 - 2x_P x + (x_P^2 + y_P^2 - 2 y_P c + c^2)\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} x^2 - 2 x_P x + x_P^2\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} (x-x_P)^2\\
|
||||
\end{align}
|
||||
|
|
Binary file not shown.
|
@ -11,16 +11,19 @@ Now there is finite set $M = \Set{x_1, \dots, x_n} \subseteq D$ of minima for gi
|
|||
But minimizing $d_{P,f}$ is the same as minimizing
|
||||
$d_{P,f}^2 = x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2$.
|
||||
|
||||
\begin{theorem}[Fermat's theorem about stationary points]\label{thm:required-extremum-property}
|
||||
In order to solve the minimal distance problem, Fermat's theorem
|
||||
about stationary points will be tremendously usefull:
|
||||
|
||||
\begin{theorem}[Fermat's theorem about stationary points]\label{thm:fermats-theorem}
|
||||
Let $x_0$ be a local extremum of a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$.
|
||||
|
||||
Then: $f'(x_0) = 0$.
|
||||
\end{theorem}
|
||||
|
||||
Let $S_n$ be the function that returns the set of solutions for a
|
||||
polynomial of degree $n$ and a point:
|
||||
polynomial $f$ of degree $n$ and a point $P$:
|
||||
|
||||
\[S_n: \Set{\text{Polynomials of degree } n \text{ defined on } \mdr} \times \mdr^2 \rightarrow \mathcal{P}({\mdr})\]
|
||||
\[S_n(f, P) := \underset{x\in\mdr}{\arg \min d_{P,f}(x)}\]
|
||||
\[S_n(f, P) := \underset{x\in\mdr}{\arg \min d_{P,f}(x)} = M\]
|
||||
|
||||
If possible, I will explicitly give this function.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue