mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
Aufgabe 3 sehr ausführlich erklärt
This commit is contained in:
parent
eb2f792e95
commit
bae5d05c67
2 changed files with 48 additions and 3 deletions
|
@ -8,11 +8,56 @@ Und jetzt die Berechnung
|
|||
|
||||
\[f'(x, y) \cdot (x_0, y_0) = f(x,y)\]
|
||||
|
||||
LR-Zerlegung für $f'(x, y)$:
|
||||
LR-Zerlegung für $f'(x, y)$ kann durch scharfes hinsehen durchgeführt
|
||||
werden, da es in $L$ nur eine unbekannte (links unten) gibt. Es gilt
|
||||
also ausführlich:
|
||||
|
||||
\begin{align}
|
||||
L &= \begin{pmatrix}1 &0 \\ x^2 & 1\end{pmatrix}\\
|
||||
R &= \begin{pmatrix}3 & \cos y \\ 0 & e^y - x^2 \cos y\end{pmatrix}\\
|
||||
\begin{pmatrix}
|
||||
3 & \cos y\\
|
||||
3 x^2 & e^y
|
||||
\end{pmatrix}
|
||||
&=
|
||||
\overbrace{\begin{pmatrix}
|
||||
1 & 0\\
|
||||
l_{12} & 1
|
||||
\end{pmatrix}}^L \cdot
|
||||
\overbrace{\begin{pmatrix}
|
||||
r_{11} & r_{12}\\
|
||||
0 & r_{22}
|
||||
\end{pmatrix}}^R\\
|
||||
\Rightarrow r_{11} &= 3\\
|
||||
\Rightarrow r_{12} &= \cos y\\
|
||||
\Rightarrow \begin{pmatrix}
|
||||
3 & \cos y\\
|
||||
3 x^2 & e^y
|
||||
\end{pmatrix}
|
||||
&=
|
||||
\begin{pmatrix}
|
||||
1 & 0\\
|
||||
l_{12} & 1
|
||||
\end{pmatrix} \cdot
|
||||
\begin{pmatrix}
|
||||
3 & \cos y\\
|
||||
0 & r_{22}
|
||||
\end{pmatrix}\\
|
||||
\Rightarrow 3x^2 &\stackrel{!}{=} l_{12} \cdot 3 + 1 \cdot 0\\
|
||||
\Leftrightarrow l_{12} &= x^2\\
|
||||
\Rightarrow e^y &\stackrel{!}{=} x^2 \cdot \cos y + 1 \cdot r_{22}\\
|
||||
\Leftrightarrow r_{22} &= -x^2 \cdot \cos y + e^y\\
|
||||
\Rightarrow \begin{pmatrix}
|
||||
3 & \cos y\\
|
||||
3 x^2 & e^y
|
||||
\end{pmatrix}
|
||||
&=
|
||||
\begin{pmatrix}
|
||||
1 & 0\\
|
||||
x^2 & 1
|
||||
\end{pmatrix} \cdot
|
||||
\begin{pmatrix}
|
||||
3 & \cos y\\
|
||||
0 & -x^2 \cdot \cos y + e^y
|
||||
\end{pmatrix}\\
|
||||
P &= I_2\\
|
||||
-f ( \frac{-1}{3}, 0) &= \begin{pmatrix} 2\\ -\frac{1}{27}\end{pmatrix}\\
|
||||
c &= \begin{pmatrix} 2\\ \frac{7}{27} \end{pmatrix}\\
|
||||
|
|
Binary file not shown.
Loading…
Add table
Add a link
Reference in a new issue