mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
Remove trailing spaces
The commands find . -type f -name '*.md' -exec sed --in-place 's/[[:space:]]\+$//' {} \+ and find . -type f -name '*.tex' -exec sed --in-place 's/[[:space:]]\+$//' {} \+ were used to do so.
This commit is contained in:
parent
c578b25d2f
commit
7740f0147f
538 changed files with 3496 additions and 3496 deletions
|
@ -33,7 +33,7 @@
|
|||
\EndIf \Comment{now: $a \in [3, \dots, p-2]$}
|
||||
\ElsIf{!$\Call{isPrime}{a}$} \Comment{rule (II)}
|
||||
\State $p_1, p_2, \dots, p_n \gets \Call{Factorize}{a}$
|
||||
\State \Return $\prod_{i=1}^n \Call{CalculateLegendre}{p_i, p}$
|
||||
\State \Return $\prod_{i=1}^n \Call{CalculateLegendre}{p_i, p}$
|
||||
\Else \Comment{now: $a \in \mathbb{P}, \sqrt{p-2} \geq a \geq 3$}
|
||||
\If{$\frac{p-1}{2} \equiv 0 \mod 2$ or $\frac{a-1}{2} \equiv 0 \mod 2$}
|
||||
\State \Return $\Call{CalculateLegendre}{p, a}$
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
\documentclass[aspectratio=169,hyperref={pdfpagelabels=false}]{beamer}
|
||||
\usepackage{lmodern}
|
||||
|
||||
|
||||
\usepackage[utf8]{inputenc} % this is needed for german umlauts
|
||||
\usepackage[ngerman]{babel} % this is needed for german umlauts
|
||||
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
||||
|
@ -11,7 +11,7 @@
|
|||
\usepackage{verbatim}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{arrows,shapes}
|
||||
|
||||
|
||||
% Define some styles for graphs
|
||||
\tikzstyle{vertex}=[circle,fill=black!25,minimum size=20pt,inner sep=0pt]
|
||||
\tikzstyle{selected vertex} = [vertex, fill=red!24]
|
||||
|
@ -20,14 +20,14 @@
|
|||
\tikzstyle{weight} = [font=\small]
|
||||
\tikzstyle{selected edge} = [draw,line width=5pt,-,red!50]
|
||||
\tikzstyle{ignored edge} = [draw,line width=5pt,-,black!20]
|
||||
|
||||
|
||||
% see http://deic.uab.es/~iblanes/beamer_gallery/index_by_theme.html
|
||||
%\usetheme{Frankfurt}
|
||||
\usefonttheme{professionalfonts}
|
||||
|
||||
|
||||
% disables bottom navigation bar
|
||||
\beamertemplatenavigationsymbolsempty
|
||||
|
||||
|
||||
% http://tex.stackexchange.com/questions/23727/converting-beamer-slides-to-animated-images
|
||||
\setbeamertemplate{navigation symbols}{}%
|
||||
|
||||
|
@ -41,7 +41,7 @@
|
|||
\pgfsetlayers{background,main}
|
||||
\newcommand\hlight[1]{\tikz[overlay, remember picture,baseline=-\the\dimexpr\fontdimen22\textfont2\relax]\node[rectangle,fill=blue!50,rounded corners,fill opacity = 0.2,draw,thick,text opacity =1] {$#1$};}
|
||||
\newcommand\tocalculate[1]{\tikz[overlay, remember picture,baseline=-\the\dimexpr\fontdimen22\textfont2\relax]\node[rectangle,fill=green!50,rounded corners,fill opacity = 0.2,draw,thick,text opacity =1] {$#1$};}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\begin{minipage}[b]{0.30\linewidth}
|
||||
\centering
|
||||
|
|
|
@ -11,11 +11,11 @@
|
|||
|
||||
\begin{document}
|
||||
\begin{preview}
|
||||
Sei $n \in \mathbb{N}_{\geq 1}$, $A \in \mathbb{R}^{n \times n}$ und
|
||||
Sei $n \in \mathbb{N}_{\geq 1}$, $A \in \mathbb{R}^{n \times n}$ und
|
||||
positiv definit sowie symmetrisch.
|
||||
|
||||
Dann existiert eine Zerlegung $A = L \cdot L^T$, wobei $L$ eine
|
||||
untere Dreiecksmatrix ist. Diese wird von folgendem Algorithmus
|
||||
untere Dreiecksmatrix ist. Diese wird von folgendem Algorithmus
|
||||
berechnet:
|
||||
|
||||
\begin{algorithm}[H]
|
||||
|
|
|
@ -9,8 +9,8 @@
|
|||
\usepackage{braket} % needed for \Set
|
||||
\usepackage{algorithm,algpseudocode}
|
||||
|
||||
\algnewcommand\True{\textbf{true}\space}
|
||||
\algnewcommand\False{\textbf{false}\space}
|
||||
\algnewcommand\True{\textbf{true}\space}
|
||||
\algnewcommand\False{\textbf{false}\space}
|
||||
\algnewcommand{\LineComment}[1]{\State \(\triangleright\) #1}
|
||||
\begin{document}
|
||||
\begin{preview}
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
\newcommand*{\AddNote}[4]{%
|
||||
\begin{tikzpicture}[overlay, remember picture]
|
||||
\draw [decoration={brace,amplitude=0.5em},decorate,very thick]
|
||||
($(#3)!(#1.north)!($(#3)-(0,1)$)$) --
|
||||
($(#3)!(#1.north)!($(#3)-(0,1)$)$) --
|
||||
($(#3)!(#2.south)!($(#3)-(0,1)$)$)
|
||||
node [align=center, text width=2.5cm, pos=0.5, anchor=west] {#4};
|
||||
\end{tikzpicture}
|
||||
|
@ -28,7 +28,7 @@
|
|||
\Require $Z \in \mathbb{R}_{\geq 0}, b \in \mathbb{N}_{\geq 2}$
|
||||
\State $p\gets 0$\tikzmark{top}
|
||||
\While{$b^p > Z$}\tikzmark{right}
|
||||
\State $p\gets p+1$
|
||||
\State $p\gets p+1$
|
||||
\EndWhile
|
||||
\State $i\gets p-1$\tikzmark{bottom}
|
||||
\\
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
\begin{itemize}
|
||||
\item $c:E \rightarrow \mathbb{R}_0^+$: capacity of an edge
|
||||
\item $e: V \rightarrow \mathbb{R}_0^+$: excess (too much flow in one node)
|
||||
\item $r_f: V \times V \rightarrow \mathbb{R}, \; r_f(u,v) := c(u,v) - f(u,v) $: remaining capacity
|
||||
\item $r_f: V \times V \rightarrow \mathbb{R}, \; r_f(u,v) := c(u,v) - f(u,v) $: remaining capacity
|
||||
\item $dist: V \rightarrow \mathbb{N}$: the label (imagine this as height)
|
||||
\end{itemize}
|
||||
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
\newcommand*{\AddNote}[4]{%
|
||||
\begin{tikzpicture}[overlay, remember picture]
|
||||
\draw [decoration={brace,amplitude=0.5em},decorate,very thick]
|
||||
($(#3)!(#1.north)!($(#3)-(0,1)$)$) --
|
||||
($(#3)!(#1.north)!($(#3)-(0,1)$)$) --
|
||||
($(#3)!(#2.south)!($(#3)-(0,1)$)$)
|
||||
node [align=center, text width=2.5cm, pos=0.5, anchor=west] {#4};
|
||||
\end{tikzpicture}
|
||||
|
|
|
@ -9,8 +9,8 @@
|
|||
\usepackage{braket} % needed for \Set
|
||||
\usepackage{algorithm,algpseudocode}
|
||||
|
||||
\algnewcommand\True{\textbf{true}\space}
|
||||
\algnewcommand\False{\textbf{false}\space}
|
||||
\algnewcommand\True{\textbf{true}\space}
|
||||
\algnewcommand\False{\textbf{false}\space}
|
||||
\algnewcommand{\LineComment}[1]{\State \(\triangleright\) #1}
|
||||
\begin{document}
|
||||
\begin{preview}
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
\newcommand*{\AddNote}[4]{%
|
||||
\begin{tikzpicture}[overlay, remember picture]
|
||||
\draw [decoration={brace,amplitude=0.5em},decorate,very thick]
|
||||
($(#3)!(#1.north)!($(#3)-(0,1)$)$) --
|
||||
($(#3)!(#1.north)!($(#3)-(0,1)$)$) --
|
||||
($(#3)!(#2.south)!($(#3)-(0,1)$)$)
|
||||
node [align=center, text width=2.5cm, pos=0.5, anchor=west] {#4};
|
||||
\end{tikzpicture}
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
|
||||
\begin{document}
|
||||
\begin{preview}
|
||||
Sei $S \subseteq V$ und $c:E\rightarrow\mathbb{R}_0^+$ die
|
||||
Sei $S \subseteq V$ und $c:E\rightarrow\mathbb{R}_0^+$ die
|
||||
Kantengewichtsfunktion.
|
||||
Für $v \in V \setminus S$ sei:
|
||||
|
||||
|
@ -20,8 +20,8 @@
|
|||
c(S,v) &:= \sum_{\substack{\Set{u,v} \in E\\ u \in S}} c(\Set{u,v})
|
||||
\end{align*}
|
||||
|
||||
Sei nun $d: \mathcal{P}(V) \rightarrow V$ die Funktion, die den
|
||||
Knoten liefert, der am stärksten mit $S \in \mathcal{P}(V)$
|
||||
Sei nun $d: \mathcal{P}(V) \rightarrow V$ die Funktion, die den
|
||||
Knoten liefert, der am stärksten mit $S \in \mathcal{P}(V)$
|
||||
verbunden ist:
|
||||
\[d(S) := v \in V \setminus S: c(S, v) = \max(\Set{c(S,v) | v \in V \setminus S})\]
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
\Require $G = (V, E)$ an undirected graph
|
||||
\State $n \gets |V|$
|
||||
\State Give all vertices an index $1 \leq i \leq n$ that defines an order
|
||||
|
||||
|
||||
\For{$i \in 1, \dots, n$}
|
||||
\State $v_i$.color $\gets 1$
|
||||
\EndFor
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
\Require $G = (V, E)$ an undirected graph
|
||||
\State $n \gets |V|$
|
||||
\State Give all vertices an index $1 \leq i \leq n$ that defines an order
|
||||
|
||||
|
||||
\For{$i \in 1, \dots, n$}
|
||||
\State $v_i$.color $\gets 1$
|
||||
\EndFor
|
||||
|
|
|
@ -39,7 +39,7 @@
|
|||
\EndFor
|
||||
\EndFor
|
||||
|
||||
\State
|
||||
\State
|
||||
\State \Return $D[|r|][|h|]$
|
||||
\EndFunction
|
||||
\end{algorithmic}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue