2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-26 06:48:04 +02:00

Remove trailing spaces

The commands

find . -type f -name '*.md' -exec sed --in-place 's/[[:space:]]\+$//' {} \+

and

find . -type f -name '*.tex' -exec sed --in-place 's/[[:space:]]\+$//' {} \+

were used to do so.
This commit is contained in:
Martin Thoma 2015-10-14 14:25:34 +02:00
parent c578b25d2f
commit 7740f0147f
538 changed files with 3496 additions and 3496 deletions

View file

@ -1,8 +1,8 @@
\chapter{Linear function}
\section{Defined on $\mdr$}
\begin{theorem}[Solution formula for linear functions on $\mdr$]
Let $f: \mdr \rightarrow \mdr $ be a linear function
$f(x) := m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
Let $f: \mdr \rightarrow \mdr $ be a linear function
$f(x) := m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
$t \in \mdr$ be a linear function.
Then there is only one point $(x, f(x))$ on the graph of $f$ with
@ -42,7 +42,7 @@
\addplot[red, nodes near coords=$f$,every node near coord/.style={anchor=225}] coordinates {(0.9, 0.5)};
\addlegendentry{$f(x)=\frac{1}{2}x$}
\addlegendentry{$f_\bot(x)=-2x+6$}
\end{axis}
\end{axis}
\end{tikzpicture}
\caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular}
\label{fig:linear-min-distance}
@ -65,7 +65,7 @@
\clearpage
\section{Defined on a closed interval $[a,b] \subseteq \mdr$}
Let $f:[a,b] \rightarrow \mdr$, $f(x) := m\cdot x + t$ with $a,b,m,t \in \mdr$ and
Let $f:[a,b] \rightarrow \mdr$, $f(x) := m\cdot x + t$ with $a,b,m,t \in \mdr$ and
$a \leq b$, $m \neq 0$ be a linear function.
\begin{figure}[htp]
@ -102,7 +102,7 @@ $a \leq b$, $m \neq 0$ be a linear function.
\addlegendentry{$f_\bot(x)=-2x+6, D=[-5,5]$}
\addlegendentry{$h(x)=3x-3, D=[1,1.5]$}
\addlegendentry{$h(x)=-x+5, D=[4,5]$}
\end{axis}
\end{axis}
\end{tikzpicture}
\caption{Different situations when you have linear functions which
are defined on a closed intervall}
@ -121,7 +121,7 @@ because $S_1(f,P)$ gives all global minima of $f$. Those are also
minima for the intervall $[a,b]$. There are not more minima, because
$S_1$ gives all minima of $P$ to $f$.
If $S_1(f, P) \cap [a,b] = \emptyset$, then it is not that simple.
If $S_1(f, P) \cap [a,b] = \emptyset$, then it is not that simple.
But we can calculate the distance function:
\begin{align}
@ -131,7 +131,7 @@ But we can calculate the distance function:
&= \sqrt{x^2(1+m^2) + x(-2 x_P + 2m(t-y_P)) + (x_P^2 + (t-y_P)^2)}
\end{align}
This function (defined on $\mdr$) is symmetry to the axis
This function (defined on $\mdr$) is symmetry to the axis
\begin{align}
x_S &= - \frac{-2 x_P + 2m(t-y_P)}{2(1+m^2)}\\
&= \frac{x_P - m(t-y_P)}{1+m^2}\\
@ -141,7 +141,7 @@ This function (defined on $\mdr$) is symmetry to the axis
$f$ is on $(-\infty, x_S]$ strictly monotonically decreasing and
on $[x_S, + \infty)$ strictly monotonically increasing.
Thus we can conclude:
Thus we can conclude:
\[\forall x,y \in \mdr: x \leq y < x_S \Rightarrow d_{P,f}(x_S) < d_{P,f}(y) \leq d_{P,f}(x)\]
\[\forall x,y \in \mdr: x_S < y \leq x \Rightarrow d_{P,f}(x_S) < d_{P,f}(y) \leq d_{P,f}(x)\]
@ -149,6 +149,6 @@ When $S_1(f, P) \cap [a,b] = \emptyset$, then you can have two cases:
\begin{itemize}
\item $a \leq b < x_S$: $b$ has the shortest distance in $[a,b]$
on the graph of $f$ to $P$.
\item $x_S < a \leq b$: $a$ has the shortest distance in $[a,b]$
\item $x_S < a \leq b$: $a$ has the shortest distance in $[a,b]$
on the graph of $f$ to $P$.
\end{itemize}