mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
Remove trailing spaces
The commands find . -type f -name '*.md' -exec sed --in-place 's/[[:space:]]\+$//' {} \+ and find . -type f -name '*.tex' -exec sed --in-place 's/[[:space:]]\+$//' {} \+ were used to do so.
This commit is contained in:
parent
c578b25d2f
commit
7740f0147f
538 changed files with 3496 additions and 3496 deletions
|
@ -1,7 +1,7 @@
|
|||
\chapter{Cubic functions}
|
||||
\section{Defined on $\mdr$}
|
||||
Let $f:\mdr \rightarrow \mdr, f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$
|
||||
be a cubic function with $a \in \mdr \setminus \Set{0}$ and
|
||||
Let $f:\mdr \rightarrow \mdr, f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$
|
||||
be a cubic function with $a \in \mdr \setminus \Set{0}$ and
|
||||
$b, c, d \in \mdr$.
|
||||
|
||||
\begin{figure}[htp]
|
||||
|
@ -26,15 +26,15 @@ $b, c, d \in \mdr$.
|
|||
minor tick num=-3,
|
||||
enlargelimits=true,
|
||||
tension=0.08]
|
||||
\addplot[domain=-3:3, thick,samples=50, red] {x*x*x};
|
||||
\addplot[domain=-3:3, thick,samples=50, red] {x*x*x};
|
||||
\addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x*x};
|
||||
\addplot[domain=-3:3, thick,samples=50, blue] {x*x*x+2*x*x};
|
||||
\addplot[domain=-3:3, thick,samples=50, orange] {x*x*x+x};
|
||||
\addplot[domain=-3:3, thick,samples=50, orange] {x*x*x+x};
|
||||
\addlegendentry{$f_1(x)=x^3$}
|
||||
\addlegendentry{$f_2(x)=x^3 + x^2$}
|
||||
\addlegendentry{$f_2(x)=x^3 + 2 \cdot x^2$}
|
||||
\addlegendentry{$f_1(x)=x^3 + x$}
|
||||
\end{axis}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{Cubic functions}
|
||||
\end{figure}
|
||||
|
@ -51,7 +51,7 @@ $b, c, d \in \mdr$.
|
|||
|
||||
\subsection{Calculate points with minimal distance}
|
||||
\begin{theorem}\label{thm:no-finite-solution}
|
||||
There cannot be a finite, closed form solution to the problem of finding
|
||||
There cannot be a finite, closed form solution to the problem of finding
|
||||
a closest point $(x, f(x))$ to a given point $P$ when $f$ is
|
||||
a polynomial function of degree $3$ or higher.
|
||||
\end{theorem}
|
||||
|
@ -89,11 +89,11 @@ $b, c, d \in \mdr$.
|
|||
\item With $x_p := cd - c y_P+\tilde{f}$, we can get any value of $\tilde{f} \in \mdr$.
|
||||
\end{enumerate}
|
||||
|
||||
The first restriction guaratees that we have a polynomial of
|
||||
The first restriction guaratees that we have a polynomial of
|
||||
degree 5. The second one is necessary, to get a high range of
|
||||
$\tilde{e}$.
|
||||
|
||||
This means that there is no finite solution formula for the problem of
|
||||
This means that there is no finite solution formula for the problem of
|
||||
finding the closest points on a cubic function to a given point,
|
||||
because if there was one, you could use this formula for finding
|
||||
roots of polynomials of degree 5. $\qed$
|
||||
|
@ -101,7 +101,7 @@ $b, c, d \in \mdr$.
|
|||
|
||||
|
||||
\subsection{Another approach}
|
||||
Just like we moved the function $f$ and the point to get in a
|
||||
Just like we moved the function $f$ and the point to get in a
|
||||
nicer situation, we can apply this approach for cubic functions.
|
||||
|
||||
\begin{figure}[htp]
|
||||
|
@ -126,9 +126,9 @@ nicer situation, we can apply this approach for cubic functions.
|
|||
minor tick num=-3,
|
||||
enlargelimits=true,
|
||||
tension=0.08]
|
||||
\addplot[domain=-3:3, thick,samples=50, red] {x*x*x};
|
||||
\addplot[domain=-3:3, thick,samples=50, red] {x*x*x};
|
||||
\addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x};
|
||||
\addplot[domain=-3:3, thick,samples=50, orange] {x*x*x-x};
|
||||
\addplot[domain=-3:3, thick,samples=50, orange] {x*x*x-x};
|
||||
\addplot[domain=-3:3, thick,samples=50, blue, dotted] {x*x*x+2*x};
|
||||
\addplot[domain=-3:3, thick,samples=50, lime, dashed] {x*x*x+3*x};
|
||||
\addlegendentry{$f_1(x)=x^3$}
|
||||
|
@ -136,7 +136,7 @@ nicer situation, we can apply this approach for cubic functions.
|
|||
\addlegendentry{$f_1(x)=x^3 - x$}
|
||||
\addlegendentry{$f_2(x)=x^3 + 2 \cdot x$}
|
||||
\addlegendentry{$f_2(x)=x^3 + 3 \cdot x$}
|
||||
\end{axis}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{Cubic functions with $b = d = 0$}
|
||||
\end{figure}
|
||||
|
@ -176,8 +176,8 @@ As this leads to a polynomial of degree 5 of which we have to find
|
|||
roots, there cannot be more than 5 solutions.
|
||||
\todo[inline]{Can there be 3, 4 or even 5 solutions? Examples!
|
||||
|
||||
After looking at function graphs of cubic functions, I'm pretty
|
||||
sure that there cannot be 4 or 5 solutions, no matter how you
|
||||
After looking at function graphs of cubic functions, I'm pretty
|
||||
sure that there cannot be 4 or 5 solutions, no matter how you
|
||||
chose the cubic function $f$ and $P$.
|
||||
|
||||
I'm also pretty sure that there is no polynomial (no matter what degree)
|
||||
|
@ -193,7 +193,7 @@ You could interpolate the cubic function by a quadratic spline.
|
|||
|
||||
\subsubsection{Newtons method}
|
||||
One way to find roots of functions is Newtons method. It gives an
|
||||
iterative computation procedure that can converge quadratically
|
||||
iterative computation procedure that can converge quadratically
|
||||
if some conditions are met:
|
||||
|
||||
\begin{theorem}[local quadratic convergence of Newton's method\footnotemark]
|
||||
|
@ -201,7 +201,7 @@ if some conditions are met:
|
|||
Let $x^* \in D$ with $f(x^*) = 0$ and the Jaccobi-Matrix $f'(x^*)$
|
||||
should not be invertable when evaluated at the root.
|
||||
|
||||
Then there is a sphere
|
||||
Then there is a sphere
|
||||
\[K := K_\rho(x^*) = \Set{x \in \mdr^n | \|x- x^*\|_\infty \leq \rho} \subseteq D\]
|
||||
such that $x^*$ is the only root of $f$ in $K$. Furthermore,
|
||||
the elements of the sequence
|
||||
|
@ -233,7 +233,7 @@ Muller's method was first presented by David E. Muller in 1956.
|
|||
\subsubsection{Bisection method}
|
||||
The idea of the bisection method is the following:
|
||||
|
||||
Suppose you know a finite intervall $[a,b]$ in which you have
|
||||
Suppose you know a finite intervall $[a,b]$ in which you have
|
||||
exactly one root $r \in (a,b)$ with $f(r) = 0$.
|
||||
|
||||
Then you can half that interval:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue