mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
Add example for theorem environment
This commit is contained in:
parent
92b04eb687
commit
70f383ec49
3 changed files with 49 additions and 0 deletions
|
@ -0,0 +1,8 @@
|
||||||
|
SOURCE=prove-transform-random-variable-theorem
|
||||||
|
|
||||||
|
make:
|
||||||
|
pdflatex $(SOURCE).tex -output-format=pdf
|
||||||
|
make clean
|
||||||
|
|
||||||
|
clean:
|
||||||
|
rm -rf $(TARGET) *.class *.html *.log *.aux *.out
|
Binary file not shown.
|
@ -0,0 +1,41 @@
|
||||||
|
\documentclass[a4paper]{scrartcl}
|
||||||
|
\usepackage[english]{babel}
|
||||||
|
\usepackage[utf8]{inputenc}
|
||||||
|
\usepackage{amssymb,amsmath}
|
||||||
|
|
||||||
|
\newtheorem{theorem}{Theorem}
|
||||||
|
\newenvironment{proof}{\paragraph{Proof:}}{\hfill$\square$}
|
||||||
|
\newcommand{\Prob}{\mathbb{P}}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\begin{theorem}
|
||||||
|
Let $Y \sim \mathcal{N}(\mu, \sigma^2)$ and $X \sim e^Y$.
|
||||||
|
Then X has the density
|
||||||
|
\[f_X(x) = \begin{cases} \frac{1}{x \sigma \sqrt{2 \pi}}\exp{- \frac{(\log x - \mu)^2}{2 \sigma^2}} &\text{if } x > 0\\
|
||||||
|
0 & \text{otherwise}\end{cases}\]
|
||||||
|
\end{theorem}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
\begin{align}
|
||||||
|
\Prob(X \leq t) &= \Prob(e^Y \leq t)\\
|
||||||
|
&= \begin{cases}\Prob(Y \leq \log(t)) &\text{if } x > 0\\
|
||||||
|
0 &\text{otherwise}
|
||||||
|
\end{cases}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
Obviously, the density $f_X(x) = 0$ for $x \leq 0$. Now continue with
|
||||||
|
$t > 0$:
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
\Prob(X \leq t) &= \Prob(Y \leq \log(t))\\
|
||||||
|
&= \Phi_{\mu, \sigma^2}(\log(t))\\
|
||||||
|
&= \Phi_{0, 1} \left (\frac{\log(t) - \mu}{\sigma} \right)\\
|
||||||
|
f_X(x) &= \frac{\partial}{\partial x} \Phi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\
|
||||||
|
&= \left (\frac{\partial}{\partial x} \left (\frac{\log(x) - \mu}{\sigma} \right) \right) \cdot \varphi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\
|
||||||
|
&= \left (\frac{\sigma \cdot \frac{1}{x}}{\sigma^2} \right) \cdot \varphi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\
|
||||||
|
&= \frac{1}{x \sigma} \cdot \varphi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\
|
||||||
|
&= \frac{1}{x \sigma} \cdot \frac{1}{\sqrt{2\pi}} \exp \left (-\frac{1}{2} \cdot {\left(\frac{\log(x) - \mu}{\sigma} \right )}^2 \right )
|
||||||
|
\end{align}
|
||||||
|
\end{proof}
|
||||||
|
\end{document}
|
Loading…
Add table
Add a link
Reference in a new issue