diff --git a/documents/prove-transform-random-variable-theorem/Makefile b/documents/prove-transform-random-variable-theorem/Makefile new file mode 100644 index 0000000..1263879 --- /dev/null +++ b/documents/prove-transform-random-variable-theorem/Makefile @@ -0,0 +1,8 @@ +SOURCE=prove-transform-random-variable-theorem + +make: + pdflatex $(SOURCE).tex -output-format=pdf + make clean + +clean: + rm -rf $(TARGET) *.class *.html *.log *.aux *.out diff --git a/documents/prove-transform-random-variable-theorem/prove-transform-random-variable-theorem.pdf b/documents/prove-transform-random-variable-theorem/prove-transform-random-variable-theorem.pdf new file mode 100644 index 0000000..a2d0827 Binary files /dev/null and b/documents/prove-transform-random-variable-theorem/prove-transform-random-variable-theorem.pdf differ diff --git a/documents/prove-transform-random-variable-theorem/prove-transform-random-variable-theorem.tex b/documents/prove-transform-random-variable-theorem/prove-transform-random-variable-theorem.tex new file mode 100644 index 0000000..2a005d7 --- /dev/null +++ b/documents/prove-transform-random-variable-theorem/prove-transform-random-variable-theorem.tex @@ -0,0 +1,41 @@ +\documentclass[a4paper]{scrartcl} +\usepackage[english]{babel} +\usepackage[utf8]{inputenc} +\usepackage{amssymb,amsmath} + +\newtheorem{theorem}{Theorem} +\newenvironment{proof}{\paragraph{Proof:}}{\hfill$\square$} +\newcommand{\Prob}{\mathbb{P}} + +\begin{document} + \begin{theorem} + Let $Y \sim \mathcal{N}(\mu, \sigma^2)$ and $X \sim e^Y$. + Then X has the density + \[f_X(x) = \begin{cases} \frac{1}{x \sigma \sqrt{2 \pi}}\exp{- \frac{(\log x - \mu)^2}{2 \sigma^2}} &\text{if } x > 0\\ + 0 & \text{otherwise}\end{cases}\] + \end{theorem} + + + \begin{proof} + \begin{align} + \Prob(X \leq t) &= \Prob(e^Y \leq t)\\ + &= \begin{cases}\Prob(Y \leq \log(t)) &\text{if } x > 0\\ + 0 &\text{otherwise} + \end{cases} + \end{align} + + Obviously, the density $f_X(x) = 0$ for $x \leq 0$. Now continue with + $t > 0$: + + \begin{align} + \Prob(X \leq t) &= \Prob(Y \leq \log(t))\\ + &= \Phi_{\mu, \sigma^2}(\log(t))\\ + &= \Phi_{0, 1} \left (\frac{\log(t) - \mu}{\sigma} \right)\\ + f_X(x) &= \frac{\partial}{\partial x} \Phi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\ + &= \left (\frac{\partial}{\partial x} \left (\frac{\log(x) - \mu}{\sigma} \right) \right) \cdot \varphi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\ + &= \left (\frac{\sigma \cdot \frac{1}{x}}{\sigma^2} \right) \cdot \varphi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\ + &= \frac{1}{x \sigma} \cdot \varphi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\ + &= \frac{1}{x \sigma} \cdot \frac{1}{\sqrt{2\pi}} \exp \left (-\frac{1}{2} \cdot {\left(\frac{\log(x) - \mu}{\sigma} \right )}^2 \right ) + \end{align} + \end{proof} +\end{document}