mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
Vorlesung vom 14.11.2013 digitalisiert
This commit is contained in:
parent
81f906b58b
commit
5da87d7827
12 changed files with 352 additions and 0 deletions
Binary file not shown.
|
@ -102,5 +102,152 @@ U_i = \Set{(x_0: \dots : x_n) \in \mdp^n(\mdr) | x_i \neq 0} &\rightarrow \mdr^n
|
|||
\end{enumerate}
|
||||
\end{beispiel}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Mitschrieb vom 14.11.2013 %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\begin{definition}\xindex{Verklebung}
|
||||
Seien $X, Y$ $n$-dimensionale Mannigfaltigkeiten, $U \subseteq X$
|
||||
und $V \subseteq Y$ offen, $\Phi: U \rightarrow V$ ein Homöomorphismus
|
||||
$Z = (X \dcup Y) /_\sim$ mit der von $u \sim \Phi(u) \forall{u \in U}$
|
||||
erzeugten Äquivalenzrelation und der von $\sim$ induzierten
|
||||
Quotiententopologie.
|
||||
|
||||
$Z$ heißt \textbf{Verklebung} von $X$ und $Y$ längs $U$ und $V$.
|
||||
$Z$ besitzt einen Atlas aus $n$-dimensionalen Karten.
|
||||
Falls $Z$ hausdoffsch ist, ist $Z$ eine $n$-dimensionale
|
||||
Mannigfaltigkeit.
|
||||
\end{definition}
|
||||
|
||||
\todo[inline]{Bilder mit Verklebung einfügen}
|
||||
|
||||
\begin{korollar}
|
||||
Sind $X, Y$ Mannigfaltigkeiten der Dimension $n$ bzw. $m$, so ist
|
||||
$X \times Y$ eine Mannigfaltigkeit der Dimension $n+m$.
|
||||
\end{korollar}
|
||||
|
||||
\begin{beweis}
|
||||
Produkte von Karten sind Karten. $\qed$
|
||||
\end{beweis}
|
||||
|
||||
\begin{beispiel}
|
||||
Mannigfaltigkeiten mit Dimension 1:
|
||||
\begin{enumerate}[label=\arabic*)]
|
||||
\item Offene Intervalle, $\mdr$, $(0,1)$ sind alle homöomorph
|
||||
\item $S^1$
|
||||
\end{enumerate}
|
||||
|
||||
Mannigfaltigkeiten mit Dimension 2:
|
||||
\begin{enumerate}[label=\arabic*)]
|
||||
\item $\mdr^2$
|
||||
\item $S^2$ (0 Henkel)
|
||||
\item $T^2$ (1 Henkel)
|
||||
\item oder mehr Henkel, wie z.B. der Zweifachtorus in Abb. \ref{fig:double-torus}
|
||||
\end{enumerate}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.2\linewidth, keepaspectratio]{figures/Double-torus-illustration.png}
|
||||
\caption{Zweifachtorus}
|
||||
\label{fig:double-torus}
|
||||
\end{figure}
|
||||
\end{beispiel}
|
||||
|
||||
\begin{korollar}
|
||||
Sei $n \in \mdn, F:\mdr^n \rightarrow \mdr$ stetig differenzierbar
|
||||
und $X = V(F) := \Set{x \in \mdr^n | F(x) = 0}$ das \enquote{vanishing set}.
|
||||
|
||||
Dann gilt:
|
||||
\begin{enumerate}[label=\alph*)]
|
||||
\item $X$ ist abgeschlossen in $\mdr^n$
|
||||
\item Ist $\text{grad}(F)(X) \neq 0 \forall{x \in X}$, so ist
|
||||
$X$ eine Mannigfaltigkeit der Dimension $n-1$. \label{Mannigfaltigkeitskriterium}
|
||||
\end{enumerate}
|
||||
\end{korollar}
|
||||
|
||||
\begin{beweis}
|
||||
\begin{enumerate}[label=\alph*),ref=\theplaindefinition.\alph*]
|
||||
\item Sei $y \in \mdr^n \setminus V(F)$. Weil $F$ stetig ist,
|
||||
gibt es $\delta > 0$, sodass $F(\fB_\delta(y)) \subseteq \fB_\varepsilon(F(y))$
|
||||
mit $\varepsilon = \frac{1}{2} \|F(y)\|$. Folgt
|
||||
$\fB_\delta(y) \cap V(F) = \emptyset \Rightarrow \mdr^n \setminus V(F)$
|
||||
ist offen.
|
||||
\item Sei $x \in X$ mit $\text{grad}(F)(x) \neq 0$, also
|
||||
\obda $\frac{\partial F}{\partial X_1} (x) \neq 0$,
|
||||
$x = (x_1, \dots, x_n)$, $x' := (x_2, \dots, x_n) \in \mdr^{n-1}$.
|
||||
Der Satz von der impliziten Funktion liefert nun:
|
||||
Es gibt Umgebungen $U$ von $x'$ und differenzierbare
|
||||
Funktionen $g: U \rightarrow \mdr$, sodass
|
||||
$G: U \rightarrow \mdr^n, \; u \mapsto (g(u), u)$
|
||||
eine stetige Abbildung auf eine offene Umgebung $V$ von
|
||||
$x$ in $X$ ist.
|
||||
\end{enumerate}
|
||||
$\qed$
|
||||
\end{beweis}
|
||||
|
||||
\begin{beispiel}\xindex{Neilsche Parabel}
|
||||
\begin{enumerate}[label=\alph*)]
|
||||
\item $F: \mdr^3 \rightarrow \mdr,\;\;\; (x, y, z) \mapsto x^2 + y^2 + z^2 - 1$,
|
||||
$V(F) = S^2$, $\text{grad}(F) = (2x, 2y, 2z) \xRightarrow{\ref{Mannigfaltigkeitskriterium}} S^n$
|
||||
ist $n$-dimensionale Mannigfaltigkeit in $\mdr^{n+1}$
|
||||
\item $F: \mdr^2 \rightarrow \mdr, \;\;\; (x,y) \mapsto y^2 - x^3$
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\subfloat[$F(x,y) = y^2 - x^3$]{
|
||||
\input{figures/3d-function-semicubical-parabola.tex}
|
||||
\label{fig:semicubical-parabola-2d}
|
||||
}%
|
||||
\subfloat[$y^2 - ax^3 = 0$]{
|
||||
\input{figures/2d-semicubical-parabola.tex}
|
||||
\label{fig:semicubical-parabola-3d}
|
||||
}%
|
||||
\label{Neilsche-Parabel}
|
||||
\caption{Rechts ist die Neilsche Parabel für verschiedene Parameter $a$.}
|
||||
\end{figure}
|
||||
Es gilt: $\text{grad}(F) = (-3x^2, 2y)$. Also: $\text{grad}(0,0) = (0,0)$.
|
||||
Daher ist Korollar \label{Mannigfaltigkeitskriterium}
|
||||
nicht anwendbar, aber $V(F)$ ist trotzdem
|
||||
eine 1-dimensionale topologische Mannigfaltigkeit.
|
||||
\end{enumerate}
|
||||
\end{beispiel}
|
||||
|
||||
\begin{definition}\textbf{Mannigfaltigkeit!mit Rand}
|
||||
Sei $X$ ein Hausdorffraum mit abzählbarer Basis der Topologie.
|
||||
$X$ heißt $n$-dimensionale \textbf{Mannigfaltigkeit mit Rand},
|
||||
wenn es einen Atlas $(U_i, \varphi_i)$ gibt, wobei $U_i \subseteq X_i$
|
||||
offen und $\varphi_i$ ein Homöomorphismus auf eine offene
|
||||
Teilmenge von
|
||||
\[R_{+,0}^n := \Set{(x_1, \dots, x_n) \in \mdr^n | x_m \geq 0}\]
|
||||
ist. $R_{+,0}^n$ ist ein \enquote{Halbraum}.
|
||||
\end{definition}
|
||||
|
||||
\begin{beispiel}
|
||||
\todo[inline]{Viele Bilder: Pair of pants, sphere with a hole, halbraum...}
|
||||
\end{beispiel}
|
||||
|
||||
\begin{definition}\xindex{Rand}
|
||||
Sei $X$ eine $n$-dimensionale Mannigfaltigkeit mit Rand und
|
||||
Atlas $(U_i, \varphi_i)$. Dann heißt
|
||||
\[\partial X := \bigcup_{i\in I} \Set{x \in U_i | \varphi_i (x)_n = 0}\]
|
||||
\textbf{Rand} von $X$.
|
||||
\end{definition}
|
||||
|
||||
$\partial X$ ist eine Mannigfaltigkeit der Dimension $n-1$.
|
||||
|
||||
\begin{definition}\xindex{Kartenwechsel}\xindex{bergangsfunktion}
|
||||
Sei $X$ eine $n$-dimensionale Mannigfaltigkeit mit Atlas
|
||||
$(U_i, \varphi_i)_{i \in I}$
|
||||
|
||||
\begin{enumerate}[label=\alph*)]
|
||||
\item Für $i, j \in I$ mit $U_i, U_j \neq \emptyset$ heißt
|
||||
\begin{align*}
|
||||
\varphi_{ij} &:= \varphi_j \circ \varphi_i^{-1}\\
|
||||
\varphi_i (U_i \cap U_j) &\rightarrow \varphi_j (U_i \cap U_j)
|
||||
\end{align*}
|
||||
\textbf{Kartenwechsel} oder \textbf{Übergangsfunktion}.
|
||||
\end{enumerate}
|
||||
\end{definition}
|
||||
|
||||
\todo[inline]{Bilder mit Verklebung einfügen}
|
||||
|
||||
% Die Übungsaufgaben sollen ganz am Ende des Kapitels sein.
|
||||
\input{Kapitel2-UB}
|
||||
|
|
|
@ -65,6 +65,27 @@
|
|||
sort=MengenoperationNSetminus
|
||||
}
|
||||
|
||||
\newglossaryentry{cup}
|
||||
{
|
||||
name={\ensuremath{A \cup B}},
|
||||
description={Vereinigung},
|
||||
sort=MengenoperationOCup
|
||||
}
|
||||
|
||||
\newglossaryentry{dcup}
|
||||
{
|
||||
name={\ensuremath{A \dcup B}},
|
||||
description={Disjunkte Vereinigung},
|
||||
sort=MengenoperationOCupD
|
||||
}
|
||||
|
||||
\newglossaryentry{cap}
|
||||
{
|
||||
name={\ensuremath{A \cap B}},
|
||||
description={Schnitt},
|
||||
sort=MengenoperationOCap
|
||||
}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Zahlenmengen %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
|
32
documents/GeoTopo/figures/2d-semicubical-parabola.tex
Normal file
32
documents/GeoTopo/figures/2d-semicubical-parabola.tex
Normal file
|
@ -0,0 +1,32 @@
|
|||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
legend pos=south east,
|
||||
axis x line=middle,
|
||||
axis y line=middle,
|
||||
grid = major,
|
||||
%width=9cm,
|
||||
%height=4.5cm,
|
||||
grid style={dashed, gray!30},
|
||||
xmin= 0, % start the diagram at this x-coordinate
|
||||
xmax= 12, % end the diagram at this x-coordinate
|
||||
ymin=-10, % start the diagram at this y-coordinate
|
||||
ymax= 10, % end the diagram at this y-coordinate
|
||||
%axis background/.style={fill=white},
|
||||
xlabel=$x$,
|
||||
ylabel=$y$,
|
||||
%xticklabels={-2,-1.6,...,7},
|
||||
tick align=outside,
|
||||
%minor tick num=-3,
|
||||
enlargelimits=true]
|
||||
\addplot[domain=0:12, red, thick,samples=500] {1/3*x^1.5};
|
||||
\addplot[domain=0:12, orange, thick,samples=500] {1*x^1.5};
|
||||
\addplot[domain=0:12, blue, thick,samples=500] {2*x^1.5};
|
||||
|
||||
\addplot[domain=0:12, red, thick,samples=500] {-1/3*x^1.5};
|
||||
\addplot[domain=0:12, orange, thick,samples=500] {-1*x^1.5};
|
||||
\addplot[domain=0:12, blue, thick,samples=500] {-2*x^1.5};
|
||||
\addlegendentry{$a=\frac{1}{3}$}
|
||||
\addlegendentry{$a=1$}
|
||||
\addlegendentry{$a=2$}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
|
@ -0,0 +1,31 @@
|
|||
\pgfplotsset{
|
||||
colormap={whitered}{
|
||||
color(0cm)=(white);
|
||||
color(1cm)=(orange!75!red)
|
||||
}
|
||||
}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\begin{axis}[
|
||||
colormap name=whitered,
|
||||
width=15cm,
|
||||
view={155}{45},
|
||||
enlargelimits=false,
|
||||
grid=major,
|
||||
domain=-5:5,
|
||||
y domain=-5:5,
|
||||
samples=56, %57 : TeX capacity exceeded, sorry [main memory size=3000000].
|
||||
% see also http://tex.stackexchange.com/a/7954/5645
|
||||
xlabel=$x$,
|
||||
ylabel=$y$,
|
||||
zlabel={$z$},
|
||||
colorbar,
|
||||
colorbar style={
|
||||
at={(-0.1,0)},
|
||||
anchor=south west,
|
||||
height=0.25*\pgfkeysvalueof{/pgfplots/parent axis height},
|
||||
title={$f(x,y)$}
|
||||
}
|
||||
]
|
||||
\addplot3[surf] {y*y-x*x*x};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
BIN
documents/GeoTopo/figures/Double-torus-illustration.png
Normal file
BIN
documents/GeoTopo/figures/Double-torus-illustration.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 260 KiB |
|
@ -62,4 +62,7 @@
|
|||
|
||||
\def\GL{\ensuremath{\mathrm{GL}}}
|
||||
\newcommand\mapsfrom{\mathrel{\reflectbox{\ensuremath{\mapsto}}}}
|
||||
\newcommand\dcup{\mathbin{\dot{\cup}}}
|
||||
\newcommand\obda{o.~B.~d.~A.}
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
|
||||
\usepackage{pgfplots}
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
legend pos=south east,
|
||||
axis x line=middle,
|
||||
axis y line=middle,
|
||||
grid = major,
|
||||
%width=9cm,
|
||||
%height=4.5cm,
|
||||
grid style={dashed, gray!30},
|
||||
xmin= 0, % start the diagram at this x-coordinate
|
||||
xmax= 12, % end the diagram at this x-coordinate
|
||||
ymin=-10, % start the diagram at this y-coordinate
|
||||
ymax= 10, % end the diagram at this y-coordinate
|
||||
%axis background/.style={fill=white},
|
||||
xlabel=$x$,
|
||||
ylabel=$y$,
|
||||
%xticklabels={-2,-1.6,...,7},
|
||||
tick align=outside,
|
||||
%minor tick num=-3,
|
||||
enlargelimits=true]
|
||||
\addplot[domain=0:12, red, thick,samples=500] {1/3*x^1.5};
|
||||
\addplot[domain=0:12, orange, thick,samples=500] {1*x^1.5};
|
||||
\addplot[domain=0:12, blue, thick,samples=500] {2*x^1.5};
|
||||
|
||||
\addplot[domain=0:12, red, thick,samples=500] {-1/3*x^1.5};
|
||||
\addplot[domain=0:12, orange, thick,samples=500] {-1*x^1.5};
|
||||
\addplot[domain=0:12, blue, thick,samples=500] {-2*x^1.5};
|
||||
\addlegendentry{$a=\frac{1}{3}$}
|
||||
\addlegendentry{$a=1$}
|
||||
\addlegendentry{$a=2$}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
Binary file not shown.
After Width: | Height: | Size: 62 KiB |
|
@ -0,0 +1,41 @@
|
|||
\documentclass{article}
|
||||
\usepackage[pdftex,active,tightpage]{preview}
|
||||
\setlength\PreviewBorder{2mm}
|
||||
\usepackage{pgfplots}
|
||||
\pgfplotsset{compat=1.9}
|
||||
|
||||
\begin{document}
|
||||
\begin{preview}
|
||||
\pgfplotsset{
|
||||
colormap={whitered}{
|
||||
color(0cm)=(white);
|
||||
color(1cm)=(orange!75!red)
|
||||
}
|
||||
}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\begin{axis}[
|
||||
colormap name=whitered,
|
||||
width=6cm,
|
||||
view={155}{45},
|
||||
enlargelimits=false,
|
||||
grid=major,
|
||||
domain=-5:5,
|
||||
y domain=-5:5,
|
||||
samples=56, %57 : TeX capacity exceeded, sorry [main memory size=3000000].
|
||||
% see also http://tex.stackexchange.com/a/7954/5645
|
||||
xlabel=$x$,
|
||||
ylabel=$y$,
|
||||
zlabel={$z$},
|
||||
colorbar,
|
||||
colorbar style={
|
||||
at={(-0.1,0)},
|
||||
anchor=south west,
|
||||
height=0.25*\pgfkeysvalueof{/pgfplots/parent axis height},
|
||||
title={$f(x,y)$}
|
||||
}
|
||||
]
|
||||
\addplot3[surf] {y*y-x*x*x};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{preview}
|
||||
\end{document}
|
35
tikz/3d-function-semicubical-parabola/Makefile
Normal file
35
tikz/3d-function-semicubical-parabola/Makefile
Normal file
|
@ -0,0 +1,35 @@
|
|||
SOURCE = 3d-function-semicubical-parabola
|
||||
DELAY = 80
|
||||
DENSITY = 300
|
||||
WIDTH = 512
|
||||
|
||||
make:
|
||||
pdflatex $(SOURCE).tex -output-format=pdf
|
||||
make clean
|
||||
|
||||
clean:
|
||||
rm -rf $(TARGET) *.class *.html *.log *.aux *.data *.gnuplot
|
||||
|
||||
gif:
|
||||
pdfcrop $(SOURCE).pdf
|
||||
convert -verbose -delay $(DELAY) -loop 0 -density $(DENSITY) $(SOURCE)-crop.pdf $(SOURCE).gif
|
||||
make clean
|
||||
|
||||
png:
|
||||
make
|
||||
make svg
|
||||
inkscape $(SOURCE).svg -w $(WIDTH) --export-png=$(SOURCE).png
|
||||
|
||||
transparentGif:
|
||||
convert $(SOURCE).pdf -transparent white result.gif
|
||||
make clean
|
||||
|
||||
svg:
|
||||
make
|
||||
#inkscape $(SOURCE).pdf --export-plain-svg=$(SOURCE).svg
|
||||
pdf2svg $(SOURCE).pdf $(SOURCE).svg
|
||||
# Necessary, as pdf2svg does not always create valid svgs:
|
||||
inkscape $(SOURCE).svg --export-plain-svg=$(SOURCE).svg
|
||||
rsvg-convert -a -w $(WIDTH) -f svg $(SOURCE).svg -o $(SOURCE)2.svg
|
||||
inkscape $(SOURCE)2.svg --export-plain-svg=$(SOURCE).svg
|
||||
rm $(SOURCE)2.svg
|
3
tikz/3d-function-semicubical-parabola/Readme.md
Normal file
3
tikz/3d-function-semicubical-parabola/Readme.md
Normal file
|
@ -0,0 +1,3 @@
|
|||
Compiled example
|
||||
----------------
|
||||

|
Loading…
Add table
Add a link
Reference in a new issue