2013-09-01 11:01:24 +02:00
|
|
|
\documentclass{article}
|
|
|
|
\usepackage[pdftex,active,tightpage]{preview}
|
|
|
|
\setlength\PreviewBorder{2mm}
|
|
|
|
|
|
|
|
\usepackage[utf8]{inputenc} % this is needed for umlauts
|
|
|
|
\usepackage[ngerman]{babel} % this is needed for umlauts
|
|
|
|
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
|
|
|
\usepackage{amssymb,amsmath,amsfonts} % nice math rendering
|
|
|
|
\usepackage{braket} % needed for \Set
|
|
|
|
\usepackage{algorithm,algpseudocode}
|
|
|
|
|
|
|
|
\usepackage{tikz}
|
|
|
|
\usetikzlibrary{decorations.pathreplacing,calc}
|
|
|
|
\newcommand{\tikzmark}[1]{\tikz[overlay,remember picture] \node (#1) {};}
|
|
|
|
\newcommand*{\AddNote}[4]{%
|
|
|
|
\begin{tikzpicture}[overlay, remember picture]
|
|
|
|
\draw [decoration={brace,amplitude=0.5em},decorate,very thick]
|
|
|
|
($(#3)!(#1.north)!($(#3)-(0,1)$)$) --
|
|
|
|
($(#3)!(#2.south)!($(#3)-(0,1)$)$)
|
|
|
|
node [align=center, text width=2.5cm, pos=0.5, anchor=west] {#4};
|
|
|
|
\end{tikzpicture}
|
|
|
|
}%
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
\begin{preview}
|
|
|
|
\begin{algorithm}[H]
|
|
|
|
\begin{algorithmic}
|
|
|
|
\Require $p \in \mathbb{P}, a \in \mathbb{Z}, p \geq 3$
|
2013-09-01 11:10:31 +02:00
|
|
|
\If{$a \geq p$ or $a < 0$}\Comment{Regel (III)}
|
2013-09-01 11:01:24 +02:00
|
|
|
\State \Return $\Call{CalculateLegendre}{a \mod p, p}$ \Comment{nun: $a \in [0, \dots, p-1]$}
|
|
|
|
\ElsIf{$a \equiv 0 \mod p$} \Comment{Null-Fall}
|
|
|
|
\State \Return 0
|
|
|
|
\ElsIf{$a \equiv 1 \mod p$} \Comment{Eins-Fall}
|
|
|
|
\State \Return 1
|
|
|
|
\ElsIf{$a \equiv -1 \mod p$} \Comment{Regel (VI)}
|
|
|
|
\If{$p \equiv 1 \mod 4$}
|
|
|
|
\State \Return 1
|
|
|
|
\Else
|
|
|
|
\State \Return -1
|
|
|
|
\EndIf
|
|
|
|
\ElsIf{!$\Call{isPrime}{|a|}$} \Comment{Regel (II)}
|
|
|
|
\State $p_1, p_2, \dots, p_n \gets \Call{Faktorisiere}{a}$
|
2013-09-01 11:18:19 +02:00
|
|
|
\State \Return $\prod_{i=1}^n \Call{CalculateLegendre}{p_i, a}$ \Comment{nun: $a \in \mathbb{P}$}
|
|
|
|
\ElsIf{$a == 2$} \Comment{Regel (VII)}
|
|
|
|
\If{$a \equiv \pm 1 \mod 8$}
|
|
|
|
\State \Return 1
|
|
|
|
\Else
|
|
|
|
\State \Return -1
|
|
|
|
\EndIf \Comment{nun: $a \in \mathbb{P}, a \geq 3$}
|
2013-09-01 11:01:24 +02:00
|
|
|
\ElsIf{$p == 3$} \Comment{Regel (IV)}
|
|
|
|
\State $t \gets p \mod 3$
|
|
|
|
\If{$t == 2$}
|
|
|
|
\State $t \gets -1$
|
|
|
|
\EndIf
|
|
|
|
\State \Return $t$
|
|
|
|
\Else
|
2013-09-01 11:18:19 +02:00
|
|
|
\State \Return $(-1) \cdot \Call{CalculateLegendre}{p, a}$
|
2013-09-01 11:01:24 +02:00
|
|
|
\EndIf
|
|
|
|
\end{algorithmic}
|
|
|
|
\caption{Calculate Legendre-Symbol}
|
|
|
|
%\AddNote{top}{bottom}{right}{calclulate $p$ such that: $b^p \leq Z < b^{p+1}$} %\tikzmark{top},\tikzmark{right},\tikzmark{bottom}
|
|
|
|
\label{alg:euclidBaseTransformation}
|
|
|
|
\end{algorithm}
|
|
|
|
\end{preview}
|
|
|
|
\end{document}
|