mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
Legendre-Symbol
This commit is contained in:
parent
a28f787179
commit
943a5c4aee
6 changed files with 137 additions and 3 deletions
Binary file not shown.
|
@ -8,6 +8,7 @@
|
|||
\usepackage{color}
|
||||
\usepackage{framed}
|
||||
\usepackage{enumerate} % for advanced numbering of lists
|
||||
\usepackage{braket} % needed for Set
|
||||
\clubpenalty = 10000 % Schusterjungen verhindern
|
||||
\widowpenalty = 10000 % Hurenkinder verhindern
|
||||
|
||||
|
@ -124,14 +125,14 @@
|
|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\begin{document}
|
||||
\section*{Unendlich viele Primzahlen}
|
||||
\begin{satz}{Euklid}
|
||||
\begin{satz}{Euklid}{}
|
||||
Es sein $n \in \mathbb{N}$. Die Zahl $m := n! + 1$ hat einen Primteiler,
|
||||
aber dieser kann nicht $\leq n$ sein, denn sonst müsste er mit $n!$
|
||||
auch $1=m-n!$ teilen. Also gibt es eine Primzahl $> n \blacksquare$
|
||||
\end{satz}
|
||||
|
||||
\begin{satz}{Euler}
|
||||
\underline{Annahme:} Es gibt nur endlich viele Primzahlen $\{p_1, \dots, p_k\}$
|
||||
\underline{Annahme:} Es gibt nur endlich viele Primzahlen $\Set{p_1, \dots, p_k}$
|
||||
mit $p_1 < \dots < p_k$
|
||||
|
||||
Es gilt:
|
||||
|
@ -143,6 +144,11 @@ Es gilt:
|
|||
\end{align*}
|
||||
\end{satz}
|
||||
|
||||
\begin{satz}{Dirichlets Primzahlsatz}{}
|
||||
Es sei $n \in \mathbb{N}$ beliebig. Dann gibt es unendlich viele
|
||||
Primzahlen $p \cong 1 \mod n$.
|
||||
\end{satz}
|
||||
|
||||
\section*{Sylowsätze}
|
||||
\begin{satz}{Erster Sylowsatz}
|
||||
Es seien $G$ eine endliche Gruppe und $p$ eine Primzahl. Dann existiert in $G$
|
||||
|
@ -175,8 +181,38 @@ Es sein $p \geq 3$ eine Primzahl. Für $a \in \mathbb{Z}$ sei
|
|||
\end{cases} \]
|
||||
\end{definition}
|
||||
|
||||
\subsection*{Rechenregeln und Beispiele für das Legendre-Symbol}
|
||||
\begin{itemize}
|
||||
\item Restklassenkörper
|
||||
\item[(I)] Eulers Kriterium: $\left(\frac{a}{p}\right) = a^\frac{p-1}{2} \mod p$
|
||||
\item[(II)] Strikt multiplikativ im Zähler: $\left(\frac{a \cdot b}{p}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right)$
|
||||
\item[(III)] $a \equiv b \mod p \Rightarrow \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$
|
||||
\item[(IV)] $\left(\frac{a}{3}\right) = a \mod 3$
|
||||
\item[(V)] Quadratische Reziprozitätsgesetz: Es seinen $p \neq l$ zwei ungerade Primzahlen. Dann gilt:\\
|
||||
$\left(\frac{p}{l}\right) \cdot \left(\frac{l}{p}\right) =
|
||||
(-1)^{\frac{p-1}{2} \cdot \frac{l-1}{2}}
|
||||
$
|
||||
\item[(VI)] Erste Ergänzung: $\left(\frac{-1}{p}\right) =
|
||||
\begin{cases}
|
||||
1 & \text{, falls } p \equiv 1 \mod 4\\
|
||||
-1 & \text{, falls } p \equiv 3 \mod 4
|
||||
\end{cases}
|
||||
$
|
||||
\item[(VII)] Zweite Ergänzung: $\left(\frac{2}{p}\right) =
|
||||
\begin{cases}
|
||||
1 & \text{, falls } p \equiv \pm 1 \mod 8\\
|
||||
-1 & \text{, falls } p \equiv \pm 3 \mod 8
|
||||
\end{cases}
|
||||
$
|
||||
\item 2 ist quadratischer Rest modulo 7, da: $2 \equiv 3^2 \mod 7$
|
||||
\end{itemize}
|
||||
|
||||
\subsection*{Weiteres}
|
||||
\begin{itemize}
|
||||
\item Die Charakteristik eines endlichen Körpers $F$ ist eine Primzahl
|
||||
$p$ und $\mathbb{Z}/p\mathbb{Z}$ ist ein Teilring von $F$.
|
||||
\item Die Kardinalität von $F$ ist eine Potenz vom $p$.
|
||||
\item $F^\times$ ist zyklisch.
|
||||
\item $F$ ist ein Restklassenkörper des Polynomrings $\mathbb{F}_p [X]$
|
||||
\end{itemize}
|
||||
|
||||
\section*{Weiteres}
|
||||
|
|
BIN
source-code/Pseudocode/Calculate-Legendre/Calculate-Legendre.png
Normal file
BIN
source-code/Pseudocode/Calculate-Legendre/Calculate-Legendre.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 41 KiB |
|
@ -0,0 +1,59 @@
|
|||
\documentclass{article}
|
||||
\usepackage[pdftex,active,tightpage]{preview}
|
||||
\setlength\PreviewBorder{2mm}
|
||||
|
||||
\usepackage[utf8]{inputenc} % this is needed for umlauts
|
||||
\usepackage[ngerman]{babel} % this is needed for umlauts
|
||||
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
||||
\usepackage{amssymb,amsmath,amsfonts} % nice math rendering
|
||||
\usepackage{braket} % needed for \Set
|
||||
\usepackage{algorithm,algpseudocode}
|
||||
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{decorations.pathreplacing,calc}
|
||||
\newcommand{\tikzmark}[1]{\tikz[overlay,remember picture] \node (#1) {};}
|
||||
\newcommand*{\AddNote}[4]{%
|
||||
\begin{tikzpicture}[overlay, remember picture]
|
||||
\draw [decoration={brace,amplitude=0.5em},decorate,very thick]
|
||||
($(#3)!(#1.north)!($(#3)-(0,1)$)$) --
|
||||
($(#3)!(#2.south)!($(#3)-(0,1)$)$)
|
||||
node [align=center, text width=2.5cm, pos=0.5, anchor=west] {#4};
|
||||
\end{tikzpicture}
|
||||
}%
|
||||
|
||||
\begin{document}
|
||||
\begin{preview}
|
||||
\begin{algorithm}[H]
|
||||
\begin{algorithmic}
|
||||
\Require $p \in \mathbb{P}, a \in \mathbb{Z}, p \geq 3$
|
||||
\If{$a \geq p$}\Comment{Regel (III)}
|
||||
\State \Return $\Call{CalculateLegendre}{a \mod p, p}$ \Comment{nun: $a \in [0, \dots, p-1]$}
|
||||
\ElsIf{$a \equiv 0 \mod p$} \Comment{Null-Fall}
|
||||
\State \Return 0
|
||||
\ElsIf{$a \equiv 1 \mod p$} \Comment{Eins-Fall}
|
||||
\State \Return 1
|
||||
\ElsIf{$a \equiv -1 \mod p$} \Comment{Regel (VI)}
|
||||
\If{$p \equiv 1 \mod 4$}
|
||||
\State \Return 1
|
||||
\Else
|
||||
\State \Return -1
|
||||
\EndIf
|
||||
\ElsIf{!$\Call{isPrime}{|a|}$} \Comment{Regel (II)}
|
||||
\State $p_1, p_2, \dots, p_n \gets \Call{Faktorisiere}{a}$
|
||||
\State \Return $\prod_{i=1}^n \Call{CalculateLegendre}{p_i, a}$
|
||||
\ElsIf{$p == 3$} \Comment{Regel (IV)}
|
||||
\State $t \gets p \mod 3$
|
||||
\If{$t == 2$}
|
||||
\State $t \gets -1$
|
||||
\EndIf
|
||||
\State \Return $t$
|
||||
\Else
|
||||
\State \Return $a^\frac{p-1}{2} \mod p$
|
||||
\EndIf
|
||||
\end{algorithmic}
|
||||
\caption{Calculate Legendre-Symbol}
|
||||
%\AddNote{top}{bottom}{right}{calclulate $p$ such that: $b^p \leq Z < b^{p+1}$} %\tikzmark{top},\tikzmark{right},\tikzmark{bottom}
|
||||
\label{alg:euclidBaseTransformation}
|
||||
\end{algorithm}
|
||||
\end{preview}
|
||||
\end{document}
|
36
source-code/Pseudocode/Calculate-Legendre/Makefile
Normal file
36
source-code/Pseudocode/Calculate-Legendre/Makefile
Normal file
|
@ -0,0 +1,36 @@
|
|||
SOURCE = Calculate-Legendre
|
||||
DELAY = 80
|
||||
DENSITY = 300
|
||||
WIDTH = 500
|
||||
|
||||
make:
|
||||
pdflatex $(SOURCE).tex -output-format=pdf
|
||||
pdflatex $(SOURCE).tex -output-format=pdf
|
||||
make clean
|
||||
|
||||
clean:
|
||||
rm -rf $(TARGET) *.class *.html *.log *.aux *.data *.gnuplot
|
||||
|
||||
gif:
|
||||
pdfcrop $(SOURCE).pdf
|
||||
convert -verbose -delay $(DELAY) -loop 0 -density $(DENSITY) $(SOURCE)-crop.pdf $(SOURCE).gif
|
||||
make clean
|
||||
|
||||
png:
|
||||
make
|
||||
make svg
|
||||
inkscape $(SOURCE).svg -w $(WIDTH) --export-png=$(SOURCE).png
|
||||
|
||||
transparentGif:
|
||||
convert $(SOURCE).pdf -transparent white result.gif
|
||||
make clean
|
||||
|
||||
svg:
|
||||
make
|
||||
#inkscape $(SOURCE).pdf --export-plain-svg=$(SOURCE).svg
|
||||
pdf2svg $(SOURCE).pdf $(SOURCE).svg
|
||||
# Necessary, as pdf2svg does not always create valid svgs:
|
||||
inkscape $(SOURCE).svg --export-plain-svg=$(SOURCE).svg
|
||||
rsvg-convert -a -w $(WIDTH) -f svg $(SOURCE).svg -o $(SOURCE)2.svg
|
||||
inkscape $(SOURCE)2.svg --export-plain-svg=$(SOURCE).svg
|
||||
rm $(SOURCE)2.svg
|
3
source-code/Pseudocode/Calculate-Legendre/Readme.md
Normal file
3
source-code/Pseudocode/Calculate-Legendre/Readme.md
Normal file
|
@ -0,0 +1,3 @@
|
|||
Compiled example
|
||||
----------------
|
||||

|
Loading…
Add table
Add a link
Reference in a new issue