2013-11-05 20:30:34 +01:00
\documentclass [a4paper] { scrartcl}
\usepackage { amssymb, amsmath} % needed for math
2013-11-13 08:50:04 +01:00
\usepackage { mathtools} % \xRightarrow
2013-11-05 20:30:34 +01:00
\usepackage [utf8] { inputenc} % this is needed for umlauts
\usepackage [english] { babel} % this is needed for umlauts
\usepackage [T1] { fontenc} % this is needed for correct output of umlauts in pdf
\usepackage [margin=2.5cm] { geometry} %layout
\usepackage { hyperref} % links im text
\usepackage { braket} % needed for \Set
\usepackage { parskip}
\usepackage [colorinlistoftodos] { todonotes}
\usepackage { pgfplots}
\pgfplotsset { compat=1.7,compat/path replacement=1.5.1}
\usepackage { tikz}
\title { Minimal distance to a cubic function}
\author { Martin Thoma}
\hypersetup {
pdfauthor = { Martin Thoma} ,
pdfkeywords = { } ,
pdftitle = { Minimal Distance}
}
\def \mdr { \ensuremath { \mathbb { R} } }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Begin document %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin { document}
\maketitle
\begin { abstract}
In this paper I want to discuss how to find all points on a a cubic
function with minimal distance to a given point.
\end { abstract}
\section { Description of the Problem}
Let $ f: \mdr \rightarrow \mdr $ be a polynomial function and $ P \in \mdr ^ 2 $
be a point. Let $ d: \mdr ^ 2 \times \mdr ^ 2 \rightarrow \mdr _ 0 ^ + $
be the euklidean distance of two points:
\[ d \left ( ( x _ 1 , y _ 1 ) , ( x _ 2 , y _ 2 ) \right ) : = \sqrt { ( x _ 1 - x _ 2 ) ^ 2 + ( y _ 1 - y _ 2 ) ^ 2 } \]
Now there is finite set of points $ x _ 1 , \dots , x _ n $ such that
\[ \forall \tilde x \in \mathbb { R } \setminus \{ x _ 1 , \dots , x _ n \} : d ( P, ( x _ 1 , f ( x _ 1 ) ) ) = \dots = d ( P, ( x _ n, f ( x _ n ) ) ) < d ( P, ( \tilde x, f ( \tilde x ) ) ) \]
\section { Minimal distance to a constant function}
Let $ f ( x ) = c $ with $ c \in \mdr $ be a function.
2013-11-05 20:47:41 +01:00
\begin { figure} [htp]
\centering
\begin { tikzpicture}
\begin { axis} [
legend pos=north west,
axis x line=middle,
axis y line=middle,
grid = major,
width=0.8\linewidth ,
height=8cm,
grid style={ dashed, gray!30} ,
xmin=-5, % start the diagram at this x-coordinate
xmax= 5, % end the diagram at this x-coordinate
ymin= 0, % start the diagram at this y-coordinate
ymax= 3, % end the diagram at this y-coordinate
axis background/.style={ fill=white} ,
xlabel=$ x $ ,
ylabel=$ y $ ,
tick align=outside,
minor tick num=-3,
enlargelimits=true,
tension=0.08]
\addplot [domain=-5:5, thick,samples=50, red] { 1} ;
\addplot [domain=-5:5, thick,samples=50, green] { 2} ;
\addplot [domain=-5:5, thick,samples=50, blue] { 3} ;
\addplot [black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates { (2, 2)} ;
\draw [thick, dashed] (axis cs:2,0) -- (axis cs:2,3);
\addlegendentry { $ f ( x ) = 1 $ }
\addlegendentry { $ g ( x ) = 2 $ }
\addlegendentry { $ h ( x ) = 3 $ }
\end { axis}
\end { tikzpicture}
\caption { 3 constant functions}
\end { figure}
2013-11-05 20:30:34 +01:00
Then $ ( x _ P,f ( x _ P ) ) $ has
minimal distance to $ P $ . Every other point has higher distance.
\section { Minimal distance to a linear function}
Let $ f ( x ) = m \cdot x + t $ with $ m \in \mdr \setminus \Set { 0 } $ and
$ t \in \mdr $ be a function.
2013-11-05 20:47:41 +01:00
\begin { figure} [htp]
\centering
\begin { tikzpicture}
\begin { axis} [
legend pos=north east,
axis x line=middle,
axis y line=middle,
grid = major,
width=0.8\linewidth ,
height=8cm,
grid style={ dashed, gray!30} ,
xmin= 0, % start the diagram at this x-coordinate
xmax= 5, % end the diagram at this x-coordinate
ymin= 0, % start the diagram at this y-coordinate
ymax= 3, % end the diagram at this y-coordinate
axis background/.style={ fill=white} ,
xlabel=$ x $ ,
ylabel=$ y $ ,
tick align=outside,
minor tick num=-3,
enlargelimits=true,
tension=0.08]
\addplot [domain=-5:5, thick,samples=50, red] { 0.5*x} ;
\addplot [domain=-5:5, thick,samples=50, blue] { -2*x+6} ;
\addplot [black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates { (2, 2)} ;
\addlegendentry { $ f ( x ) = \frac { 1 } { 2 } x $ }
\addlegendentry { $ g ( x ) = - 2 x + 6 $ }
\end { axis}
\end { tikzpicture}
\caption { The shortest distance of $ P $ to $ f $ can be calculated by using the perpendicular}
\end { figure}
2013-11-05 20:30:34 +01:00
Now you can drop a perpendicular through $ P $ on $ f ( x ) $ . The slope $ f _ \bot $
of the perpendicular is $ - \frac { 1 } { m } $ . Then:
\begin { align}
f_ \bot (x) & = - \frac { 1} { m} \cdot x + t_ \bot \\
\Rightarrow y_ P & = - \frac { 1} { m} \cdot x_ P + t_ \bot \\
\Leftrightarrow t_ \bot & = y_ P + \frac { 1} { m} \cdot x_ P\\
f(x) & = f_ \bot (x)\\
\Leftrightarrow m \cdot x + t & = - \frac { 1} { m} \cdot x + \left (y_ P + \frac { 1} { m} \cdot x_ P \right )\\
\Leftrightarrow \left (m + \frac { 1} { m} \right ) \cdot x & = y_ P + \frac { 1} { m} \cdot x_ P - t\\
\Leftrightarrow x & = \frac { m} { m^ 2+1} \left ( y_ P + \frac { 1} { m} \cdot x_ P - t \right )
\end { align}
There is only one point with minimal distance.
2013-11-05 20:47:41 +01:00
\clearpage
2013-11-05 20:30:34 +01:00
\section { Minimal distance to a quadratic function}
Let $ f ( x ) = a \cdot x ^ 2 + b \cdot x + c $ with $ a \in \mdr \setminus \Set { 0 } $ and
$ b, c \in \mdr $ be a function.
\begin { figure} [htp]
\centering
\begin { tikzpicture}
\begin { axis} [
legend pos=north west,
axis x line=middle,
axis y line=middle,
grid = major,
width=0.8\linewidth ,
height=8cm,
grid style={ dashed, gray!30} ,
xmin=-3, % start the diagram at this x-coordinate
xmax= 3, % end the diagram at this x-coordinate
ymin=-0.25, % start the diagram at this y-coordinate
ymax= 9, % end the diagram at this y-coordinate
axis background/.style={ fill=white} ,
xlabel=$ x $ ,
ylabel=$ y $ ,
%xticklabels={-2,-1.6,...,7},
%yticklabels={-8,-7,...,8},
tick align=outside,
minor tick num=-3,
enlargelimits=true,
tension=0.08]
\addplot [domain=-3:3, thick,samples=50, red] { 0.5*x*x} ;
\addplot [domain=-3:3, thick,samples=50, green] { x*x} ;
\addplot [domain=-3:3, thick,samples=50, blue] { x*x + x} ;
\addplot [domain=-3:3, thick,samples=50, orange] { x*x + 2*x} ;
\addplot [domain=-3:3, thick,samples=50, black] { -x*x + 6} ;
\addlegendentry { $ f _ 1 ( x ) = \frac { 1 } { 2 } x ^ 2 $ }
\addlegendentry { $ f _ 2 ( x ) = x ^ 2 $ }
\addlegendentry { $ f _ 3 ( x ) = x ^ 2 + x $ }
\addlegendentry { $ f _ 4 ( x ) = x ^ 2 + 2 x $ }
\addlegendentry { $ f _ 5 ( x ) = - x ^ 2 + 6 $ }
\end { axis}
\end { tikzpicture}
\caption { Quadratic functions}
\end { figure}
\subsection { Number of points with minimal distance}
It is obvious that a quadratic function can have two points with
minimal distance.
For example, let $ f ( x ) = x ^ 2 $ and $ P = ( 0 , 5 ) $ . Then $ P _ { f, 1 } \approx ( 2 . 179 , 2 . 179 ^ 2 ) $
has minimal distance to $ P $ , but also $ P _ { f, 2 } \approx ( - 2 . 179 , 2 . 179 ^ 2 ) $ .
Obviously, there cannot be more than three points with minimal distance.
But can there be three points?
\begin { figure} [htp]
\centering
2013-11-05 20:47:41 +01:00
\begin { tikzpicture}
\begin { axis} [
legend pos=north west,
axis x line=middle,
axis y line=middle,
grid = major,
width=0.8\linewidth ,
height=8cm,
grid style={ dashed, gray!30} ,
xmin=-0.7, % start the diagram at this x-coordinate
xmax= 0.7, % end the diagram at this x-coordinate
ymin=-0.25, % start the diagram at this y-coordinate
ymax= 0.5, % end the diagram at this y-coordinate
axis background/.style={ fill=white} ,
xlabel=$ x $ ,
ylabel=$ y $ ,
%xticklabels={-2,-1.6,...,7},
%yticklabels={-8,-7,...,8},
tick align=outside,
minor tick num=-3,
enlargelimits=true,
tension=0.08]
\addplot [domain=-0.7:0.7, thick,samples=50, orange] { x*x} ;
\draw (axis cs:0,0.5) circle[radius=0.5];
\draw [red, thick] (axis cs:0,0.5) -- (axis cs:0.101,0.0102);
\draw [red, thick] (axis cs:0,0.5) -- (axis cs:-0.101,0.0102);
\draw [red, thick] (axis cs:0,0.5) -- (axis cs:0,0);
\addlegendentry { $ f ( x ) = x ^ 2 $ }
\end { axis}
\end { tikzpicture}
2013-11-05 20:30:34 +01:00
\caption { 3 points with minimal distance?}
2013-11-05 20:47:41 +01:00
\todo [inline] { Is this possible? http://math.stackexchange.com/q/553097/6876}
2013-11-05 20:30:34 +01:00
\end { figure}
2013-11-13 08:50:04 +01:00
As the point is already given, you want to minimize the following
function:
\begin { align}
d: & \mdr \rightarrow \mdr ^ +_ 0\\
d(x) & = \sqrt { (x_ p,y_ p),(x,f(x))} \\
& = \sqrt { (x_ p-x)^ 2 + (y_ p - f(x))^ 2} \\
& = \sqrt { x_ p^ 2 - 2x_ p x + x^ 2 + y_ p^ 2 - 2y_ p f(x) + f(x)^ 2}
\end { align}
Minimizing $ d $ is the same as minimizing $ d ^ 2 $ :
\begin { align}
d(x)^ 2 & = x_ p^ 2 - 2x_ p x + x^ 2 + y_ p^ 2 - 2y_ p f(x) + f(x)^ 2\\
(d(x)^ 2)' & = -2 x_ p + 2x -2y_ p(f(x))' + (f(x)^ 2)'\\
0 & \stackrel { !} { =} -2 x_ p + 2x -2y_ p(f(x))' + (f(x)^ 2)'
\end { align}
Now we use thet $ f ( x ) = ax ^ 2 + bx + c $ :
\begin { align}
0 & \stackrel { !} { =} -2 x_ p + 2x -2y_ p(2ax+b) + ((ax^ 2+bx+c)^ 2)'\\
& = -2 x_ p + 2x -2y_ p \cdot 2ax-2 y_ p b + (a^ 2 x^ 4+2 a b x^ 3+2 a c x^ 2+b^ 2 x^ 2+2 b c x+c^ 2)'\\
& = -2 x_ p + 2x -4y_ p ax-2 y_ p b + (4a^ 2 x^ 3 + 6 ab x^ 2 + 4acx + 2b^ 2 x + 2bc)\\
& = 4a^ 2 x^ 3 + 6 ab x^ 2 + 2(1 -2y_ p a+ 2ac + b^ 2)x +2(bc-by_ p-x_ p)\\
\end { align}
\subsubsection { Solutions}
As the problem stated above is a cubic equation, you can solved it
analytically. But the solutions are not very nice, so I've entered
\texttt { $ 0 = 4 * a ^ 2 * x ^ 3 + 6 * a * b * x ^ 2 + 2 * ( 1 - 2 * e * a + 2 * a * c + b ^ 2 ) * x + 2 * ( b * c - b * e - d ) $ }
with $ d : = x _ p $ and $ e : = y _ p $ .
to \href { http://www.wolframalpha.com/input/?i=0%3D4*a%5E2+*x%5E3+%2B+6+*a*b+*x%5E2+%2B+2*%281+-2*e+*a%2B+2*a*c+%2B+b%5E2%29*x+%2B2*%28b*c-b*e-d%29}{WolframAlpha} to let it solve. The solutions are:
\textbf { First solution}
\begin { align*}
x = & \frac { 1} { 6 \sqrt [3] { 2} a^ 2} \sqrt [3] { (108 a^ 4 d+54 a^ 3 b+\sqrt { (108 a^ 4 d+54 a^ 3 b)^ 2+4 (12 a^ 3 c-12 a^ 3 e-3 a^ 2 b^ 2+6 a^ 2)^ 3} )} \\
& -\frac { 12 a^ 3 c-12 a^ 3 e-3 a^ 2 b^ 2+6 a^ 2}
{ 3 (2^ { \frac { 2} { 3} } ) a^ 2 \sqrt [3] { 108 a^ 4 d+54 a^ 3 b+\sqrt { (108 a^ 4 d+54 a^ 3 b)^ 2+4 (12 a^ 3 c-12 a^ 3 e-3 a^ 2 b^ 2+6 a^ 2)^ 3} } } -b/(2 a)
\end { align*}
So the minimum for $ a = 1 , b = c = d = 0 $ is:
2013-11-05 20:30:34 +01:00
\subsection { Calculate points with minimal distance}
\todo [inline] { Write this}
\section { Minimal distance to a cubic function}
2013-11-05 20:47:41 +01:00
Let $ f ( x ) = a \cdot x ^ 3 + b \cdot x ^ 2 + c \cdot x + d $ with $ a \in \mdr \setminus \Set { 0 } $ and
$ b, c, d \in \mdr $ be a function.
2013-11-05 20:30:34 +01:00
\subsection { Number of points with minimal distance}
2013-11-13 08:50:04 +01:00
2013-11-05 20:30:34 +01:00
\todo [inline] { Write this}
2013-11-05 20:47:41 +01:00
\subsection { Special points}
\todo [inline] { Write this}
\subsection { Voronoi}
For $ b ^ 2 \geq 3 ac $
\todo [inline] { Write this}
2013-11-05 20:30:34 +01:00
\subsection { Calculate points with minimal distance}
\todo [inline] { Write this}
\end { document}