2013-11-05 20:30:34 +01:00
|
|
|
\documentclass[a4paper]{scrartcl}
|
|
|
|
\usepackage{amssymb, amsmath} % needed for math
|
|
|
|
\usepackage[utf8]{inputenc} % this is needed for umlauts
|
|
|
|
\usepackage[english]{babel} % this is needed for umlauts
|
|
|
|
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
|
|
|
\usepackage[margin=2.5cm]{geometry} %layout
|
|
|
|
\usepackage{hyperref} % links im text
|
|
|
|
\usepackage{braket} % needed for \Set
|
|
|
|
\usepackage{parskip}
|
|
|
|
\usepackage[colorinlistoftodos]{todonotes}
|
|
|
|
\usepackage{pgfplots}
|
|
|
|
\pgfplotsset{compat=1.7,compat/path replacement=1.5.1}
|
|
|
|
\usepackage{tikz}
|
|
|
|
|
|
|
|
\title{Minimal distance to a cubic function}
|
|
|
|
\author{Martin Thoma}
|
|
|
|
|
|
|
|
\hypersetup{
|
|
|
|
pdfauthor = {Martin Thoma},
|
|
|
|
pdfkeywords = {},
|
|
|
|
pdftitle = {Minimal Distance}
|
|
|
|
}
|
|
|
|
|
|
|
|
\def\mdr{\ensuremath{\mathbb{R}}}
|
|
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
% Begin document %
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
\begin{abstract}
|
|
|
|
In this paper I want to discuss how to find all points on a a cubic
|
|
|
|
function with minimal distance to a given point.
|
|
|
|
\end{abstract}
|
|
|
|
|
|
|
|
\section{Description of the Problem}
|
|
|
|
Let $f: \mdr \rightarrow \mdr$ be a polynomial function and $P \in \mdr^2$
|
|
|
|
be a point. Let $d: \mdr^2 \times \mdr^2 \rightarrow \mdr_0^+$
|
|
|
|
be the euklidean distance of two points:
|
|
|
|
\[d \left ((x_1, y_1), (x_2, y_2) \right) := \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\]
|
|
|
|
|
|
|
|
Now there is finite set of points $x_1, \dots, x_n$ such that
|
|
|
|
\[\forall \tilde x \in \mathbb{R} \setminus \{x_1, \dots, x_n\}: d(P, (x_1, f(x_1))) = \dots = d(P, (x_n, f(x_n))) < d(P, (\tilde x, f(\tilde x)))\]
|
|
|
|
|
|
|
|
\section{Minimal distance to a constant function}
|
|
|
|
Let $f(x) = c$ with $c \in \mdr$ be a function.
|
|
|
|
|
2013-11-05 20:47:41 +01:00
|
|
|
\begin{figure}[htp]
|
|
|
|
\centering
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\begin{axis}[
|
|
|
|
legend pos=north west,
|
|
|
|
axis x line=middle,
|
|
|
|
axis y line=middle,
|
|
|
|
grid = major,
|
|
|
|
width=0.8\linewidth,
|
|
|
|
height=8cm,
|
|
|
|
grid style={dashed, gray!30},
|
|
|
|
xmin=-5, % start the diagram at this x-coordinate
|
|
|
|
xmax= 5, % end the diagram at this x-coordinate
|
|
|
|
ymin= 0, % start the diagram at this y-coordinate
|
|
|
|
ymax= 3, % end the diagram at this y-coordinate
|
|
|
|
axis background/.style={fill=white},
|
|
|
|
xlabel=$x$,
|
|
|
|
ylabel=$y$,
|
|
|
|
tick align=outside,
|
|
|
|
minor tick num=-3,
|
|
|
|
enlargelimits=true,
|
|
|
|
tension=0.08]
|
|
|
|
\addplot[domain=-5:5, thick,samples=50, red] {1};
|
|
|
|
\addplot[domain=-5:5, thick,samples=50, green] {2};
|
|
|
|
\addplot[domain=-5:5, thick,samples=50, blue] {3};
|
|
|
|
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
|
|
|
|
\draw[thick, dashed] (axis cs:2,0) -- (axis cs:2,3);
|
|
|
|
\addlegendentry{$f(x)=1$}
|
|
|
|
\addlegendentry{$g(x)=2$}
|
|
|
|
\addlegendentry{$h(x)=3$}
|
|
|
|
\end{axis}
|
|
|
|
\end{tikzpicture}
|
|
|
|
\caption{3 constant functions}
|
|
|
|
\end{figure}
|
2013-11-05 20:30:34 +01:00
|
|
|
|
|
|
|
Then $(x_P,f(x_P))$ has
|
|
|
|
minimal distance to $P$. Every other point has higher distance.
|
|
|
|
|
|
|
|
\section{Minimal distance to a linear function}
|
|
|
|
Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
|
|
|
|
$t \in \mdr$ be a function.
|
|
|
|
|
2013-11-05 20:47:41 +01:00
|
|
|
\begin{figure}[htp]
|
|
|
|
\centering
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\begin{axis}[
|
|
|
|
legend pos=north east,
|
|
|
|
axis x line=middle,
|
|
|
|
axis y line=middle,
|
|
|
|
grid = major,
|
|
|
|
width=0.8\linewidth,
|
|
|
|
height=8cm,
|
|
|
|
grid style={dashed, gray!30},
|
|
|
|
xmin= 0, % start the diagram at this x-coordinate
|
|
|
|
xmax= 5, % end the diagram at this x-coordinate
|
|
|
|
ymin= 0, % start the diagram at this y-coordinate
|
|
|
|
ymax= 3, % end the diagram at this y-coordinate
|
|
|
|
axis background/.style={fill=white},
|
|
|
|
xlabel=$x$,
|
|
|
|
ylabel=$y$,
|
|
|
|
tick align=outside,
|
|
|
|
minor tick num=-3,
|
|
|
|
enlargelimits=true,
|
|
|
|
tension=0.08]
|
|
|
|
\addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
|
|
|
|
\addplot[domain=-5:5, thick,samples=50, blue] {-2*x+6};
|
|
|
|
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
|
|
|
|
\addlegendentry{$f(x)=\frac{1}{2}x$}
|
|
|
|
\addlegendentry{$g(x)=-2x+6$}
|
|
|
|
\end{axis}
|
|
|
|
\end{tikzpicture}
|
|
|
|
\caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular}
|
|
|
|
\end{figure}
|
2013-11-05 20:30:34 +01:00
|
|
|
|
|
|
|
Now you can drop a perpendicular through $P$ on $f(x)$. The slope $f_\bot$
|
|
|
|
of the perpendicular is $- \frac{1}{m}$. Then:
|
|
|
|
|
|
|
|
\begin{align}
|
|
|
|
f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
|
|
|
|
\Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
|
|
|
|
\Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P\\
|
|
|
|
f(x) &= f_\bot(x)\\
|
|
|
|
\Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
|
|
|
|
\Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
|
|
|
|
\Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )
|
|
|
|
\end{align}
|
|
|
|
|
|
|
|
There is only one point with minimal distance.
|
2013-11-05 20:47:41 +01:00
|
|
|
\clearpage
|
2013-11-05 20:30:34 +01:00
|
|
|
|
|
|
|
\section{Minimal distance to a quadratic function}
|
|
|
|
Let $f(x) = a \cdot x^2 + b \cdot x + c$ with $a \in \mdr \setminus \Set{0}$ and
|
|
|
|
$b, c \in \mdr$ be a function.
|
|
|
|
|
|
|
|
\begin{figure}[htp]
|
|
|
|
\centering
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\begin{axis}[
|
|
|
|
legend pos=north west,
|
|
|
|
axis x line=middle,
|
|
|
|
axis y line=middle,
|
|
|
|
grid = major,
|
|
|
|
width=0.8\linewidth,
|
|
|
|
height=8cm,
|
|
|
|
grid style={dashed, gray!30},
|
|
|
|
xmin=-3, % start the diagram at this x-coordinate
|
|
|
|
xmax= 3, % end the diagram at this x-coordinate
|
|
|
|
ymin=-0.25, % start the diagram at this y-coordinate
|
|
|
|
ymax= 9, % end the diagram at this y-coordinate
|
|
|
|
axis background/.style={fill=white},
|
|
|
|
xlabel=$x$,
|
|
|
|
ylabel=$y$,
|
|
|
|
%xticklabels={-2,-1.6,...,7},
|
|
|
|
%yticklabels={-8,-7,...,8},
|
|
|
|
tick align=outside,
|
|
|
|
minor tick num=-3,
|
|
|
|
enlargelimits=true,
|
|
|
|
tension=0.08]
|
|
|
|
\addplot[domain=-3:3, thick,samples=50, red] {0.5*x*x};
|
|
|
|
\addplot[domain=-3:3, thick,samples=50, green] {x*x};
|
|
|
|
\addplot[domain=-3:3, thick,samples=50, blue] {x*x + x};
|
|
|
|
\addplot[domain=-3:3, thick,samples=50, orange] {x*x + 2*x};
|
|
|
|
\addplot[domain=-3:3, thick,samples=50, black] {-x*x + 6};
|
|
|
|
\addlegendentry{$f_1(x)=\frac{1}{2}x^2$}
|
|
|
|
\addlegendentry{$f_2(x)=x^2$}
|
|
|
|
\addlegendentry{$f_3(x)=x^2+x$}
|
|
|
|
\addlegendentry{$f_4(x)=x^2+2x$}
|
|
|
|
\addlegendentry{$f_5(x)=-x^2+6$}
|
|
|
|
\end{axis}
|
|
|
|
\end{tikzpicture}
|
|
|
|
\caption{Quadratic functions}
|
|
|
|
\end{figure}
|
|
|
|
|
|
|
|
\subsection{Number of points with minimal distance}
|
|
|
|
It is obvious that a quadratic function can have two points with
|
|
|
|
minimal distance.
|
|
|
|
|
|
|
|
For example, let $f(x) = x^2$ and $P = (0,5)$. Then $P_{f,1} \approx (2.179, 2.179^2)$
|
|
|
|
has minimal distance to $P$, but also $P_{f,2}\approx (-2.179, 2.179^2)$.
|
|
|
|
|
|
|
|
Obviously, there cannot be more than three points with minimal distance.
|
|
|
|
But can there be three points?
|
|
|
|
|
|
|
|
\begin{figure}[htp]
|
|
|
|
\centering
|
2013-11-05 20:47:41 +01:00
|
|
|
\begin{tikzpicture}
|
|
|
|
\begin{axis}[
|
|
|
|
legend pos=north west,
|
|
|
|
axis x line=middle,
|
|
|
|
axis y line=middle,
|
|
|
|
grid = major,
|
|
|
|
width=0.8\linewidth,
|
|
|
|
height=8cm,
|
|
|
|
grid style={dashed, gray!30},
|
|
|
|
xmin=-0.7, % start the diagram at this x-coordinate
|
|
|
|
xmax= 0.7, % end the diagram at this x-coordinate
|
|
|
|
ymin=-0.25, % start the diagram at this y-coordinate
|
|
|
|
ymax= 0.5, % end the diagram at this y-coordinate
|
|
|
|
axis background/.style={fill=white},
|
|
|
|
xlabel=$x$,
|
|
|
|
ylabel=$y$,
|
|
|
|
%xticklabels={-2,-1.6,...,7},
|
|
|
|
%yticklabels={-8,-7,...,8},
|
|
|
|
tick align=outside,
|
|
|
|
minor tick num=-3,
|
|
|
|
enlargelimits=true,
|
|
|
|
tension=0.08]
|
|
|
|
\addplot[domain=-0.7:0.7, thick,samples=50, orange] {x*x};
|
|
|
|
\draw (axis cs:0,0.5) circle[radius=0.5];
|
|
|
|
\draw[red, thick] (axis cs:0,0.5) -- (axis cs:0.101,0.0102);
|
|
|
|
\draw[red, thick] (axis cs:0,0.5) -- (axis cs:-0.101,0.0102);
|
|
|
|
\draw[red, thick] (axis cs:0,0.5) -- (axis cs:0,0);
|
|
|
|
\addlegendentry{$f(x)=x^2$}
|
|
|
|
\end{axis}
|
|
|
|
\end{tikzpicture}
|
2013-11-05 20:30:34 +01:00
|
|
|
\caption{3 points with minimal distance?}
|
2013-11-05 20:47:41 +01:00
|
|
|
\todo[inline]{Is this possible? http://math.stackexchange.com/q/553097/6876}
|
2013-11-05 20:30:34 +01:00
|
|
|
\end{figure}
|
|
|
|
|
|
|
|
\subsection{Calculate points with minimal distance}
|
|
|
|
\todo[inline]{Write this}
|
|
|
|
|
|
|
|
\section{Minimal distance to a cubic function}
|
2013-11-05 20:47:41 +01:00
|
|
|
Let $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ with $a \in \mdr \setminus \Set{0}$ and
|
|
|
|
$b, c, d \in \mdr$ be a function.
|
|
|
|
|
2013-11-05 20:30:34 +01:00
|
|
|
\subsection{Number of points with minimal distance}
|
|
|
|
\todo[inline]{Write this}
|
|
|
|
|
2013-11-05 20:47:41 +01:00
|
|
|
\subsection{Special points}
|
|
|
|
\todo[inline]{Write this}
|
|
|
|
|
|
|
|
\subsection{Voronoi}
|
|
|
|
|
|
|
|
For $b^2 \geq 3ac$
|
|
|
|
|
|
|
|
\todo[inline]{Write this}
|
2013-11-05 20:30:34 +01:00
|
|
|
\subsection{Calculate points with minimal distance}
|
|
|
|
\todo[inline]{Write this}
|
|
|
|
\end{document}
|