mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
245 lines
8.2 KiB
TeX
245 lines
8.2 KiB
TeX
\documentclass{beamer}
|
|
\usetheme{metropolis} % https://github.com/matze/mtheme
|
|
\usepackage{hyperref}
|
|
\usepackage[utf8]{inputenc} % this is needed for german umlauts
|
|
\usepackage[english]{babel} % this is needed for german umlauts
|
|
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
|
|
|
\usepackage{adjustbox}
|
|
\usepackage{tikz}
|
|
\usetikzlibrary{mindmap,trees}
|
|
|
|
\begin{document}
|
|
|
|
\title{Data Science}
|
|
\subtitle{Tasks, Tools and Roles}
|
|
\author{Martin Thoma}
|
|
\date{3. September 2019}
|
|
\subject{Computer Science; Business}
|
|
|
|
\frame{\titlepage}
|
|
|
|
\begin{frame}[plain]{}
|
|
\begin{center}\Huge
|
|
Hi. \uncover<2->{I'm Martin.}
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}[plain]{}
|
|
\begin{center}\huge
|
|
\uncover<1->{I'm a Data Scientist.\\}
|
|
\uncover<2->{Or Machine Learning Engineer?\\}
|
|
\uncover<3->{Or Business Analyst?\\}
|
|
\uncover<4->{Or Data Engineer?}
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}[plain]{}
|
|
\begin{adjustbox}{max totalsize={.99\textwidth}{.99\textheight},center}
|
|
\begin{tikzpicture}
|
|
\path[mindmap,concept color=black,text=white]
|
|
node[concept] {Data Science};
|
|
\end{tikzpicture}
|
|
\end{adjustbox}
|
|
\end{frame}
|
|
|
|
\begin{frame}[plain]{}
|
|
\begin{adjustbox}{max totalsize={.99\textwidth}{.99\textheight},center}
|
|
\begin{tikzpicture}
|
|
\path[mindmap,concept color=black,text=white]
|
|
node[concept] {Data Science}
|
|
[clockwise from=0]
|
|
child[concept color=green!50!black] {
|
|
node[concept] {Data}
|
|
}
|
|
child[concept color=blue] {
|
|
node[concept] {Science}
|
|
};
|
|
\end{tikzpicture}
|
|
\end{adjustbox}
|
|
\end{frame}
|
|
|
|
\begin{frame}[plain]{}
|
|
\begin{adjustbox}{max totalsize={.99\textwidth}{.99\textheight},center}
|
|
\begin{tikzpicture}
|
|
\path[mindmap,concept color=black,text=white]
|
|
node[concept] {Data Science}
|
|
[clockwise from=0]
|
|
child[concept color=green!50!black] {
|
|
node[concept] {Data}
|
|
[clockwise from=135]
|
|
child { node[concept] {access} }
|
|
child { node[concept] {understand} }
|
|
child { node[concept] {clean} }
|
|
child { node[concept] {transform} }
|
|
}
|
|
child[concept color=blue] {
|
|
node[concept] {Science}
|
|
};
|
|
% child[concept color=red] { node[concept] {technical} }
|
|
% child[concept color=orange] { node[concept] {theoretical} };
|
|
\end{tikzpicture}
|
|
\end{adjustbox}
|
|
\end{frame}
|
|
|
|
\begin{frame}[plain]{}
|
|
\begin{adjustbox}{max totalsize={.99\textwidth}{.99\textheight},center}
|
|
\begin{tikzpicture}
|
|
\path[mindmap,concept color=black,text=white]
|
|
node[concept] {Data Science}
|
|
[clockwise from=0]
|
|
child[concept color=green!50!black] {
|
|
node[concept] {Data}
|
|
[clockwise from=135]
|
|
child { node[concept] {access} }
|
|
child { node[concept] {understand} }
|
|
child { node[concept] {clean} }
|
|
child { node[concept] {transform} }
|
|
}
|
|
child[concept color=red] {
|
|
node[concept] {Engineering}
|
|
}
|
|
child[concept color=blue] {
|
|
node[concept] {Science}
|
|
};
|
|
% child[concept color=orange] { node[concept] {theoretical} };
|
|
\end{tikzpicture}
|
|
\end{adjustbox}
|
|
\end{frame}
|
|
|
|
\begin{frame}[plain]{}
|
|
\begin{adjustbox}{max totalsize={.99\textwidth}{.99\textheight},center}
|
|
\begin{tikzpicture}
|
|
\path[mindmap,concept color=black,text=white]
|
|
node[concept] {Data Science}
|
|
[clockwise from=0]
|
|
child[concept color=green!50!black] {
|
|
node[concept] {Data}
|
|
[clockwise from=135]
|
|
child { node[concept] {access} }
|
|
child { node[concept] {understand} }
|
|
child { node[concept] {clean} }
|
|
child { node[concept] {transform} }
|
|
}
|
|
child[concept color=red] {
|
|
node[concept] {Engineering}
|
|
[clockwise from=90]
|
|
child { node[concept] {business problem} }
|
|
child { node[concept] {API} }
|
|
}
|
|
child[concept color=blue] {
|
|
node[concept] {Science}
|
|
};
|
|
% child[concept color=orange] { node[concept] {theoretical} };
|
|
\end{tikzpicture}
|
|
\end{adjustbox}
|
|
\end{frame}
|
|
|
|
\begin{frame}[plain]{}
|
|
\begin{adjustbox}{max totalsize={.99\textwidth}{.99\textheight},center}
|
|
\begin{tikzpicture}
|
|
\path[mindmap,concept color=black,text=white]
|
|
node[concept] {Data Science}
|
|
[clockwise from=0]
|
|
child[concept color=green!50!black] {
|
|
node[concept] {Data}
|
|
[clockwise from=135]
|
|
child { node[concept] {access} }
|
|
child { node[concept] {understand} }
|
|
child { node[concept] {clean} }
|
|
child { node[concept] {transform} }
|
|
}
|
|
child[concept color=red] {
|
|
node[concept] {Engineering}
|
|
[clockwise from=90]
|
|
child { node[concept] {business problem} }
|
|
child { node[concept] {API} }
|
|
}
|
|
child[concept color=blue] {
|
|
node[concept] {Science}
|
|
[clockwise from=90]
|
|
child { node[concept] {Hypothesis Testing} }
|
|
child { node[concept] {Modeling} }
|
|
child { node[concept] {Optimization} }
|
|
child[concept] {
|
|
node[concept] {Linear Algebra}
|
|
[clockwise from=180]
|
|
child { node[concept] {Matrix Multiplication} }
|
|
}
|
|
};
|
|
% child[concept color=orange] { node[concept] {theoretical} };
|
|
\end{tikzpicture}
|
|
\end{adjustbox}
|
|
\end{frame}
|
|
|
|
\begin{frame}[plain]{}
|
|
\begin{tabular}{l|ll}
|
|
& \textbf{Data Engineer} & \textbf{Data Scientist} \\
|
|
Buzz Words & Big Data, Data Lake & AI, DL, Neural Networks \\
|
|
Background & Computer Science & Computer Science \\
|
|
Languages & Java, Python & Python, R \\
|
|
Tools & Spark, Hadoop & Tensorflow, Keras, Sklearn \\
|
|
Solutions & Data Accessible & Predictive Model \\
|
|
\end{tabular}
|
|
\end{frame}
|
|
|
|
\begin{frame}[plain]{}
|
|
\begin{tabular}{l|ll}
|
|
& \textbf{Data Analyst} & \textbf{Data Scientist} \\
|
|
& \textbf{Business Analyst} & \\
|
|
Buzz Words & Data Warehouse & AI, Deep Learning, NNs \\
|
|
Background & Mathematics, economics & Computer Science \\
|
|
Languages & Excel, Python, R & Python, R \\
|
|
Tools & Tableau, QlikView & Pandas, Jupyter, Sklearn \\
|
|
Solutions & Business Decision & Predictive Model \\
|
|
\end{tabular}
|
|
\end{frame}
|
|
|
|
\begin{frame}[plain]{}
|
|
\begin{center}
|
|
\huge ML Engineer
|
|
\normalsize
|
|
\begin{itemize}
|
|
\item Refactor / Productionalize Data Scientists Code
|
|
\item Glorified Software Engineer who stumbled into Data Science
|
|
\end{itemize}
|
|
\tiny
|
|
Sources:
|
|
|
|
\begin{itemize}
|
|
\item /r/MachineLearning: \href{https://www.reddit.com/r/MachineLearning/comments/cxhvbd/}{What is the reality of machine learning engineer?}
|
|
\item Tomasz Dudek: \href{https://medium.com/@tomaszdudek/but-what-is-this-machine-learning-engineer-actually-doing-18464d5c699}{But what is this “machine learning engineer” actually doing?}
|
|
\end{itemize}
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Use Cases}
|
|
\begin{itemize}
|
|
\item \textbf{Time Series}: How many calls will our call center get?
|
|
\item \textbf{Categorization}: What topic is an e-mail / tweet / a comment about?
|
|
\item \textbf{Recommendations}: What do I want to buy? What should I watch next?
|
|
\item \textbf{Information Retrival}: (Fuzzy) Search, Lookup, Autocomplete
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Hard Use Cases}
|
|
\begin{itemize}
|
|
\item \textbf{Automatic Speech Recognition}: Speech to Text
|
|
\item \textbf{Speech Synthesis}: Text to Speech
|
|
\item \textbf{Translation}
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Typical Problems}
|
|
\begin{itemize}
|
|
\item Data Access / Availability
|
|
\item Data Understanding
|
|
\item Dirty Data
|
|
\item Problem Definition / Optimization Metric
|
|
\item When is it good enough?
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\end{document}
|