mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
65 lines
No EOL
2.6 KiB
TeX
65 lines
No EOL
2.6 KiB
TeX
\subsection{Write Math}
|
|
|
|
\begin{frame}{write-math.com}
|
|
\begin{itemize}
|
|
\item a website where users can add labeled training data and unlabeled
|
|
data which they want to classify. I call this data \enquote{recording}
|
|
\begin{figure}[ht]
|
|
\centering
|
|
\subfloat{
|
|
\includegraphics[height=0.1\textwidth]{../images/279952.pdf}
|
|
}%
|
|
\qquad
|
|
\subfloat{
|
|
\includegraphics[height=0.1\textwidth]{../images/281507.pdf}
|
|
}%
|
|
\qquad
|
|
\subfloat{
|
|
\includegraphics[height=0.1\textwidth]{../images/287612.pdf}
|
|
}%
|
|
\qquad
|
|
\subfloat{
|
|
\includegraphics[height=0.1\textwidth]{../images/292175.pdf}
|
|
}%
|
|
\caption*{4 recordings}
|
|
\end{figure}
|
|
\item works with desktop computers and touch devices
|
|
\item symbol recognition can be done by multiple classifiers
|
|
\item users can contribute formulas as recordings and as \LaTeX{} answers
|
|
for recordings
|
|
\item users can vote for \LaTeX{} answers:
|
|
\Large $\leq$, $\leqq$, $\leqslant$, \dots \normalsize
|
|
\item user who entered the recording can accept one answer
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\framedgraphic{Classify}{../images/classify.png}
|
|
\framedgraphic{Workflow}{../images/workflow.png}
|
|
% \framedgraphic{User page}{../images/user-page.png}
|
|
% \framedgraphic{Information about recordings}{../images/view.png}
|
|
% \framedgraphic{Symbol page}{../images/symbol.png}
|
|
% \framedgraphic{Training}{../images/train.png}
|
|
\framedgraphic{Ranking}{../images/ranking.png}
|
|
|
|
|
|
\begin{frame}[fragile]{Statistics}
|
|
\begin{itemize}
|
|
\item 127 users with at least 5 recordings
|
|
\item $\num{1111}$ symbols, but only $\num{369}$ used for experiments
|
|
\item $\num{235831}$ recordings (e.g. $\num{3489}$ times \verb+\int+, but only 50 times \verb+X+)
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}{First classification worker}
|
|
\begin{itemize}
|
|
\item preprocessing: Scale to fit into unit square while keeping the aspect
|
|
ratio
|
|
\item applies greedy time warping
|
|
\item compares a new recording with every recording
|
|
in the database
|
|
\item[$\Rightarrow$] Classification time is in $\mathcal{O}(\text{recordings})$,
|
|
but we rather would like $\mathcal{O}(\text{symbols})$
|
|
\item the current server / workflow can only handle about 4000 recordings
|
|
\item[$\Rightarrow$] Another way to classify is necessary
|
|
\end{itemize}
|
|
\end{frame} |