mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
179 lines
No EOL
7.8 KiB
TeX
179 lines
No EOL
7.8 KiB
TeX
%!TEX root = GeoTopo.tex
|
|
\markboth{Symbolverzeichnis}{Symbolverzeichnis}
|
|
\twocolumn
|
|
\chapter*{Symbolverzeichnis}
|
|
\addcontentsline{toc}{chapter}{Symbolverzeichnis}
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% Mengenoperationen %
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section*{Mengenoperationen}
|
|
|
|
Seien $A, B$ und $M$ Mengen.
|
|
|
|
% Set \mylengtha to widest element in first column; adjust
|
|
% \mylengthb so that the width of the table is \columnwidth
|
|
\settowidth\mylengtha{$A \subsetneq B$}
|
|
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
|
|
|
|
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
|
|
$A^C $ & Komplement von $A$\\
|
|
$\mathcal{P}(M)$ & Potenzmenge von $M$\\
|
|
$\overline{M}$ & Abschluss von $M$\\
|
|
$\partial M$ & Rand der Menge $M$\\
|
|
$M^\circ$ & Inneres der Menge $M$\\
|
|
$A \times B$ & Kreuzprodukt\\
|
|
$A \subseteq B$ & Teilmengenbeziehung\\
|
|
$A \subsetneq B$ & echte Teilmengenbeziehung\\
|
|
$A \setminus B$ & Differenzmenge\\
|
|
$A \cup B$ & Vereinigung\\
|
|
$A \dcup B$ & Disjunkte Vereinigung\\
|
|
$A \cap B$ & Schnitt\\
|
|
\end{xtabular}
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% Geometrie %
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section*{Geometrie}
|
|
|
|
\settowidth\mylengtha{$\overline{AB} \cong \overline{CD}$}
|
|
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
|
|
|
|
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
|
|
$AB$ & Gerade durch die Punkte $A$ und $B$\\
|
|
$\overline{AB}$ & Strecke mit Endpunkten $A$ und $B$\\
|
|
$\triangle ABC$ & Dreieck mit Eckpunkten $A, B, C$\\
|
|
$\overline{AB} \cong \overline{CD}$& Die Strecken $\overline{AB}$ und $\overline{CD}$ sind isometrisch\\
|
|
$|K|$ & Geometrische Realisierung des Simplizialkomplexes~$K$\\
|
|
\end{xtabular}
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% Gruppen %
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section*{Gruppen}
|
|
|
|
Sei $X$ ein topologischer Raum und $K$ ein Körper.
|
|
|
|
\settowidth\mylengtha{$\Homoo(X)$}
|
|
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
|
|
|
|
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
|
|
$\Homoo(X)$ & Homöomorphis\-men\-gruppe\\
|
|
$\Iso(X)$ & Isometrien\-gruppe\\
|
|
$\GL_n(K)$ & Allgemeine lineare Gruppe (von \textit{\textbf{G}eneral \textbf{L}inear Group})\\
|
|
$\SL_n(K)$ & Spezielle lineare Gruppe\\
|
|
$\PSL_n(K)$ & Projektive lineare Gruppe\\
|
|
$\Perm(X)$ & Permutations\-gruppe\\
|
|
$\Sym(X)$ & Symmetrische Gruppe\\
|
|
\end{xtabular}
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% Wege %
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section*{Wege}
|
|
|
|
Sei $\gamma: I \rightarrow X$ ein Weg.
|
|
|
|
\settowidth\mylengtha{$\gamma_1 \sim \gamma_2$}
|
|
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
|
|
|
|
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
|
|
$[\gamma]$ & Homotopieklasse von $\gamma$\\
|
|
$\gamma_1 * \gamma_2$ & Zusammenhängen von Wegen\\
|
|
$\gamma_1 \sim \gamma_2$ & Homotopie von Wegen\\
|
|
$\overline{\gamma}(x)$ & Inverser Weg, also $\overline{\gamma}(x) := \gamma(1-x)$\\
|
|
$C$ & Bild eines Weges $\gamma$, also $C := \gamma([0,1])$
|
|
\end{xtabular}
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% Weiteres %
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section*{Weiteres}
|
|
|
|
\settowidth\mylengtha{$\fB_\delta(x)$}
|
|
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
|
|
|
|
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
|
|
$\fB$ & Basis einer Topologie\\
|
|
$\fB_\delta(x)$& $\delta$-Kugel um $x$\\
|
|
$\calS$ & Subbasis einer Topologie\\
|
|
$\fT$ & Topologie\\
|
|
\end{xtabular}
|
|
|
|
\settowidth\mylengtha{$X /_\sim$}
|
|
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
|
|
|
|
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
|
|
$\atlas$ & Atlas\\
|
|
$\praum$ & Projektiver Raum\\
|
|
$\langle \cdot , \cdot \rangle$ & Skalarprodukt\\
|
|
$X /_\sim$ & $X$ modulo $\sim$\\
|
|
$[x]_\sim$ & Äquivalenzklassen von $x$ bzgl. $\sim$\\
|
|
$\| x \|$ & Norm von $x$\\
|
|
$| x |$ & Betrag von $x$\\
|
|
$\langle a \rangle$ & Erzeugnis von $a$\\
|
|
\end{xtabular}
|
|
|
|
$S^n\;\;\;$ Sphäre\\
|
|
$T^n\;\;\;$ Torus\\
|
|
|
|
\settowidth\mylengtha{$f^{-1}(M)$}
|
|
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
|
|
|
|
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
|
|
$f \circ g$&Verkettung von $f$ und $g$\\
|
|
$\pi_X$ &Projektion auf $X$\\
|
|
$f|_U$ $f$ &eingeschränkt auf $U$\\
|
|
$f^{-1}(M)$&Urbild von $M$\\
|
|
$\rang(M)$ & Rang von $M$\\
|
|
$\chi(K)$ & Euler-Charakteristik von $K$\\
|
|
$\Delta^k$ & Standard-Simplex\\
|
|
$X \# Y$ & Verklebung von $X$ und $Y$\\
|
|
$d_n$ & Lineare Abbildung aus \cref{kor:9.11}\\
|
|
$A \cong B$& $A$ ist isometrisch zu $B$\\
|
|
$f_*$ & Abbildung zwischen Fundamentalgruppen (vgl. \cpageref{korr:11.5})
|
|
\end{xtabular}
|
|
|
|
\onecolumn
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% Zahlenmengen %
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section*{Zahlenmengen}
|
|
$\mdn = \Set{1, 2, 3, \dots} \;\;\;$ Natürliche Zahlen\\
|
|
$\mdz = \mdn \cup \Set{0, -1, -2, \dots} \;\;\;$ Ganze Zahlen\\
|
|
$\mdq = \mdz \cup \Set{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}} = \Set{\frac{z}{n} \text{ mit } z \in \mdz \text{ und } n \in \mdz \setminus \Set{0}} \;\;\;$ Rationale Zahlen\\
|
|
$\mdr = \mdq \cup \Set{\sqrt{2}, -\sqrt[3]{3}, \dots}\;\;\;$ Reele Zahlen\\
|
|
$\mdr_+\;$ Echt positive reele Zahlen\\
|
|
$\mdr_{+,0}^n := \Set{(x_1, \dots, x_n) \in \mdr^n | x_n \geq 0}\;\;\;$ Halbraum\\
|
|
$\mdr^\times = \mdr \setminus \Set{0} \;$ Einheitengruppe von $\mdr$\\
|
|
$\mdc = \Set{a+ib|a,b \in \mdr}\;\;\;$ Komplexe Zahlen\\
|
|
$\mdp = \Set{2, 3, 5, 7, \dots}\;\;\;$ Primzahlen\\
|
|
$\mdh = \Set{z \in \mdc | \Im{z} > 0}\;\;\;$ obere Halbebene\\
|
|
$I = [0,1] \subsetneq \mdr\;\;\;$ Einheitsintervall\\
|
|
|
|
\settowidth\mylengtha{$f:S^1 \hookrightarrow \mdr^2$}
|
|
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
|
|
|
|
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
|
|
$f:S^1 \hookrightarrow \mdr^2$& Einbettung der Kreislinie in die Ebene\\
|
|
$\pi_1(X,x)$ & Fundamentalgruppe im topologischen Raum $X$ um $x \in X$\\
|
|
$\Fix(f)$ & Menge der Fixpunkte der Abbildung $f$\\
|
|
$\|\cdot\|_2$ & 2-Norm; Euklidische Norm\\
|
|
$\kappa$ & Krümmung\\
|
|
$\kappa_{\ts{Nor}}$ & Normalenkrümmung\\
|
|
$V(f)$ & Nullstellenmenge von $f$\footnotemark
|
|
\end{xtabular}
|
|
\footnotetext{von \textit{\textbf{V}anishing Set}}
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% Krümmung %
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section*{Krümmung}
|
|
|
|
\settowidth\mylengtha{$D_p F: \mdr^2 \rightarrow \mdr^3$}
|
|
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
|
|
|
|
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
|
|
$D_p F: \mdr^2 \rightarrow \mdr^3$& Lineare Abbildung mit Jacobi-Matrix in $p$ (siehe \cpageref{def:Tangentialebene})\\
|
|
$T_s S$ & Tangentialebene an $S \subseteq \mdr^3$ durch $s \in S$\\
|
|
$d_s n(x)$ & Weingarten-Abbildung\\
|
|
\end{xtabular}
|
|
|
|
\index{Faser|see{Urbild}}
|
|
\index{kongruent|see{isometrisch}}
|
|
\index{Kongruenz|see{Isometrie}} |