2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-26 06:48:04 +02:00
LaTeX-examples/documents/proof-of-correctness-pogo/proof-of-correctness-pogo.tex
2013-05-18 13:40:50 +02:00

179 lines
6.6 KiB
TeX

\documentclass[a4paper]{scrartcl}
\usepackage{amssymb, amsmath} % needed for math
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
\usepackage[margin=2.5cm]{geometry} %layout
\usepackage{hyperref} % links im text
\usepackage{parskip} % no indentation on new paragraphs
\usepackage{color}
\usepackage{framed}
\usepackage{enumerate} % for advanced numbering of lists
\usepackage{algorithm,algpseudocode}
\usepackage{braket} % needed for \Set
\clubpenalty = 10000 % Schusterjungen verhindern
\widowpenalty = 10000 % Hurenkinder verhindern
\hypersetup{
pdfauthor = {Martin Thoma},
pdfkeywords = {Google Code Jam, Round 1C 2013, Pogo},
pdftitle = {Proof of correctness for an algorithm for pogo}
}
% From http://www.matthewflickinger.com/blog/archives/2005/02/20/latex_mod_spacing.asp
% Thanks!
\makeatletter
\def\imod#1{\allowbreak\mkern10mu({\operator@font mod}\,\,#1)}
\makeatother
\renewcommand{\algorithmicrequire}{\textbf{Input: }}
\renewcommand{\algorithmicensure}{\textbf{Output: }}
\newenvironment{myindentpar}[1]%
{\begin{list}{}%
{\setlength{\leftmargin}{#1}}%
\item[]%
}
{\end{list}}
\begin{document}
\section{The Problem}
You're on a two-dimensional grid $\mathbb{Z} \times \mathbb{Z}$ and
have to find a way to get to one coordinate $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. You start at
$(0, 0)$.
In your
$i$-th step you move either $\underbrace{(+i,0)}_{=: E}$,
$\underbrace{(-i,0)}_{=: W}$, $\underbrace{(0,+i)}_{=: N}$ or
$\underbrace{(0,-i)}_{=: S}$.
\section{The algorithm}
\begin{algorithm}
\begin{algorithmic}
\Function{calculateSteps}{$x \in \mathbb{Z}$, $y \in \mathbb{Z}$}
\State $s \gets 0$
\State $dist \gets |x| + |y|$
\\
\While{$\overbrace{\frac{s^2 + s}{2} < dist}^\text{condition 1}$ or $\overbrace{\frac{s^2 + s}{2} \not\equiv dist \imod{2}}^\text{condition 2}$}
\State $s \gets s + 1$
\EndWhile
\\
\State \Return $s$
\EndFunction
\end{algorithmic}
\caption{Algorithm to calculate the minimum amount of steps}
\label{alg:calculateSteps}
\end{algorithm}
\clearpage
\begin{algorithm}[ht!]
\begin{algorithmic}[ht!]
\Function{solvePogo}{$x \in \mathbb{Z}$, $y \in \mathbb{Z}$}
\State $s_{\min} \gets$ \Call{calculateSteps}{$x, y$}
\\
\State $solution \gets \varepsilon$
\For{$i$ in $s_{\min}, \dots, 1$}
\If{$|x| > |y|$}
\If{$x > 0$}
\State $solution \gets solution + E$
\State $x \gets x - i$
\Else
\State $solution \gets solution + W$
\State $x \gets x + i$
\EndIf
\Else
\If{$y > 0$}
\State $solution \gets solution + N$
\State $y \gets y - i$
\Else
\State $solution \gets solution + S$
\State $y \gets y + i$
\EndIf
\EndIf
\EndFor
\\
\State \Return \Call{reverse}{$solution$}
\EndFunction
\end{algorithmic}
\caption{Algorithm to solve the pogo problem}
\label{alg:solvePogo}
\end{algorithm}
\section{Correctness}
\subsection{calculateSteps}
Let $x,y \in \mathbb{Z}$ and $s := \Call{calculateSteps}{x, y}$.
Let $s_{\min}$ be the minimum amount of necessary steps to get from $(0,0)$
to $(x,y)$ when you move $i$ units in your $i$'th step.
\textbf{Theorem: } $s = s_{\min}$
It's enough to proof $s \geq s_{\min}$ and $s \leq s_{\min}$.
\begin{myindentpar}{1cm}
\textbf{Theorem: } $s \leq s_{\min}$ (we don't make too many steps)
\textbf{Proof: }
\begin{myindentpar}{1cm}
We have to get from $(0,0)$ to $(x, y)$. As we may only move in
taxicab geometry we have to use the taxicab distance measure $d_1$:
\[d_1 \left (p, q \right ) := \sum_{i=1}^2 |p_i -q_i|\]
So in our scenario:
\[d_1 \left ((0,0), (x,y) \right ) = |x| + |y|\]
This means we have to move at least $|x| + |y|$ units to get
from $(0,0)$ to $(x, y)$. As we move $i$ units in the $i$'th step,
we have to solve the following equations for $s_{\min1}$:
\begin{align}
\sum_{i=1}^{s_{\min1}} i &\geq |x| + |y| &&\text{ and } &|x| + |y| &> \sum_{i=1}^{s_{\min1} - 1} i\\
\frac{s_{\min1}^2 + s_{\min1}}{2} &\geq |x| + |y| && & &> \sum_{i=1}^{s_{\min1} - 1} i &
\end{align}
This is what algorithm \ref{alg:calculateSteps} check with \texttt{condition 1}.
As the algorithm increases $s$ only by one in each loop, it makes
sure that $\sum_{i=1}^{s_{\min1} - 1} i$ is bigger than $|x| + |y|$.
You can undo moves by going back. But this will always make an even
number undone. When you go $(+i, 0)$ and later $(-j, 0)$ it is the
same as if you've been going $(i-j, 0)$. So $2\cdot i$ steps got undone.
But $2\cdot i$ is an even number. You will never be able to undo
an odd number of moved units. This means, the parity of the minimum
number of units you would have to move if you would move one unit per
step has to be the same as the parity of the moves you actually do.
This is exactly what \texttt{condition 2} makes sure.
So we need at least $s$ steps $\Rightarrow s \leq s_{\min} \square$
\end{myindentpar}
\textbf{Theorem: } $s \geq s_{\min}$ (we make enough steps)
\textbf{Proof: }
\begin{myindentpar}{1cm}
We chose $s$ in a way that \texttt{condition 1} is true.
As we have to go $i \in 1,\dots,s$, we can get every possible sum $\Sigma \in \Set{-\frac{s^2+s}{2}, \dots +\frac{s^2+s}{2}}$
with a subset of $\Set{1, \dots, s}$\footnote{This can easily be proved by induction over $\Sigma$.}.
This means we can make a partition $(A, \underbrace{\Set{1, \dots, s} \setminus A}_{=: B})$
such that $|\sum_{i \in A} i| = |x|$ and $|\sum_{i \in B} i|-2\cdot j = |y|$.
This means, we can reach $(x,y)$ from $(0,0)$.
\end{myindentpar}
\end{myindentpar}
\subsection{solvePogo}
\textbf{Theorem: } \Call{solvePogo}{$x,y$} returns a valid, minimal sequence of steps to get from $(0, 0)$ to $(x,y)$
\textbf{Proof: }
\begin{myindentpar}{1cm}
As $s_{\min}$ is the minimum amount of steps you need to get from
$(0,0)$ to $(x,y)$, \Call{solvePogo}{$x,y$} will return a minimal
sequence of steps to get from $(0, 0)$ to $(x,y)$ (see proof above).
We only have to prove that the sequence of steps that \Call{solvePogo}{$x,y$}
is valid, i.e. that you will get from $(0,0)$ to $(x,y)$ with the given
sequence.
TODO.
\end{myindentpar}
\end{document}