2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-26 06:48:04 +02:00
LaTeX-examples/source-code/Pseudocode/Goldberg-Tarjan-Push-Relabel/Goldberg-Tarjan-Push-Relabel.tex
Martin Thoma ee468b23dc misc
2013-02-13 20:26:49 +01:00

85 lines
3.6 KiB
TeX

\documentclass{article}
\usepackage[pdftex,active,tightpage]{preview}
\setlength\PreviewBorder{2mm}
\usepackage{amssymb,amsmath,amsfonts} % nice math rendering
\usepackage{braket} % needed for \Set
\usepackage{algorithm,algpseudocode}
\begin{document}
\begin{preview}
\begin{itemize}
\item $c:E \rightarrow \mathbb{R}_0^+$: capacity of an edge
\item $e: V \rightarrow \mathbb{R}_0^+$: excess (too much flow in one node)
\item $r_f: V \times V \rightarrow \mathbb{R}, \; r_f(u,v) := c(u,v) - f(u,v) $: remaining capacity
\item $dist: V \rightarrow \mathbb{N}$: the label (imagine this as height)
\end{itemize}
\begin{algorithm}[H]
\begin{algorithmic}
\Function{PushRelabel}{Network $N(D, s, t, c)$}
\ForAll{$(v,w) \in (V \times V \setminus E)$} \Comment{If an edge is not in $D=(V,E)$,}
\State $c(v,w) \gets 0$ \Comment{then its capacity is 0}
\EndFor
\\
\ForAll{$(v,w) \in V \times V$} \Comment{At the beginning, every edge}
\State $f(v,w) \gets 0$ \Comment{has flow=0}
\State $r_f(v,w) \gets c(v,w)$ \Comment{flow=max in the residualgraph}
\EndFor
\\
\State $dist(s) \gets |V|$
\ForAll{$v \in V \setminus \Set{s}$}
\State $f(s,v) \gets c(s,v)$ \Comment{Push maximum flow out at the beginning}
\State $r(v,s) \gets c(v,s) - f(v,s)$
\State $dist(v) \gets 0$
\State $e(v) \gets c(s,v)$ \Comment{$v$ has too much flow}
\EndFor
\\
\While{$\exists v \in V:$ \Call{isActive}{$v$}}
\If{\Call{isPushOk}{$v$}}
\State \Call{Push}{$v$}
\EndIf
\If{\Call{isRelabelOk}{$v$}}
\State \Call{Relabel}{$v$}
\EndIf
\EndWhile
\\
\State \Return $f$ \Comment{Maximaler Fluss}
\EndFunction
\\
\Function{Push}{Node $v$, Node $w$}
\State $\Delta \gets \min\Set{e(v), r_f(v,w)}$
\State $f(v,w) \gets f(v,w) + \Delta$
\State $f(w,v) \gets f(w,v) - \Delta$
\State $r_f(v,w) \gets r_f(v,w) - \Delta$
\State $r_f(w,v) \gets r_f(w,v) + \Delta$
\State $e(v) \gets e(v) - \Delta$
\State $e(w) \gets e(w) + \Delta$
\EndFunction
\\
\Function{Relabel}{Node $v$}
\If{$\Set{w \in V |r_f(v,w) > 0} == \emptyset$}
\State $dist(v) \gets \infty$
\Else
\State $dist(v) \gets \min\Set{dist(w)+1|w \in V: r_f(v,w) > 0}$
\EndIf
\EndFunction
\\
\Function{isActive}{Node $v$}
\State\Return $(e(v) > 0) \land (dist(v) < \infty)$
\EndFunction
\\
\Function{isRelabelOk}{Node $v$}
\State\Return \Call{isActive}{$v$} $\displaystyle \bigwedge_{w \in \Set{w \in V | r_f(v,w) >0}}(dist(v) \leq dist(w))$
\EndFunction
\\
\Function{isPushOk}{Node $v$}
\State\Return \Call{isActive}{$v$} $\land (e(v) > 0) \land (dist(v) == dist(w)+1)$
\EndFunction
\end{algorithmic}
\caption{Algorithm of Goldberg and Tarjan}
\label{alg:seq1}
\end{algorithm}
\end{preview}
\end{document}