2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-19 11:38:05 +02:00
LaTeX-examples/documents/Numerik/Klausur5/Aufgabe1.tex
2013-09-19 22:20:35 +02:00

106 lines
2.6 KiB
TeX

\section*{Aufgabe 1}
\paragraph{Gegeben:}
\[A = \begin{pmatrix}
2 & 3 & -1\\
-6 & -5 & 0\\
2 & -5 & 6
\end{pmatrix},\;\;\; b = \begin{pmatrix}20\\-41\\-15\end{pmatrix}\]
\paragraph{LR-Zerlegung:}
\begin{align}
&&A^{(0)} &= \begin{gmatrix}[p]
2 & 3 & -1\\
-6 & -5 & 0\\
2 & -5 & 6
\rowops
\swap{0}{1}
\end{gmatrix}\\
P^{(1)} &= \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1
\end{pmatrix}
&A^{(1)} &=
\begin{gmatrix}[p]
-6 & -5 & 0\\
2 & 3 & -1\\
2 & -5 & 6
\rowops
\add[\cdot \frac{1}{3}]{0}{1}
\add[\cdot \frac{1}{3}]{0}{2}
\end{gmatrix}\\
L^{(2)} &=\begin{pmatrix}
1 & 0 & 0\\
\nicefrac{1}{3} & 1 & 0\\
\nicefrac{1}{3} & 0 & 1
\end{pmatrix},
& A^{(2)} &= \begin{gmatrix}[p]
-6 & -5 & 0\\
0 & \frac{4}{3} & -1\\
0 & -\frac{20}{3} & 6
\rowops
\swap{1}{2}
\end{gmatrix}\\
P^{(3)} &= \begin{pmatrix}
1 & 0 & 0\\
0 & 0 & 1\\
0 & 1 & 0
\end{pmatrix},
& A^{(3)} &= \begin{gmatrix}[p]
-6 & -5 & 0\\
0 & -\frac{20}{3} & 6\\
0 & \frac{4}{3} & -1
\rowops
\add[\cdot \frac{1}{5}]{1}{2}
\end{gmatrix}\\
L^{(4)} &= \begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & \nicefrac{1}{5} & 1
\end{pmatrix},
& A^{(4)} &= \begin{gmatrix}[p]
-6 & -5 & 0\\
0 & -\frac{20}{3} & 6\\
0 & 0 & \nicefrac{1}{5}
\end{gmatrix} =:R
\end{align}
Es gilt nun:
\begin{align}
P :&= P^{(3)} \cdot P^{(1)}\\
&= \begin{pmatrix}
1 & 0 & 0\\
0 & 0 & 1\\
0 & 1 & 0
\end{pmatrix} \cdot \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1
\end{pmatrix} \\
&=
\begin{pmatrix}
0 & 1 & 0\\
0 & 0 & 1\\
1 & 0 & 0
\end{pmatrix}\\
L^{(4)} \cdot P^{(3)} \cdot L^{(2)} \cdot P^{(1)} \cdot A &= R\\
L^{-1} &= L^{(4)} \cdot \hat{L_1}\\
\hat{L_1} &= P^{(3)} \cdot L^{(2)} \cdot (P^{(3)})^{-1}\\
&= P^{(3)} \cdot L^{(2)} \cdot P^{(3)}\\
&= \begin{pmatrix}
1 & 0 & 0\\
\nicefrac{1}{3} & 1 & 0\\
\nicefrac{1}{3} & 0 & 1
\end{pmatrix}\\
L &= (L^{(4)} \cdot \hat{L_1})^{-1}\\
&= \begin{pmatrix}
1 & 0 & 0\\
-\frac{1}{3} & 1 & 0\\
-\frac{1}{3} & -\frac{1}{5} & 1
\end{pmatrix}
\end{align}
Überprüfung mit \href{http://www.wolframalpha.com/input/?i=%7B%7B1%2C+0%2C+0%7D%2C+%7B-1%2F3%2C+1%2C+0%7D%2C+%7B-1%2F3%2C+-1%2F5%2C+1%7D%7D*%7B%7B-6%2C-5%2C0%7D%2C%7B0%2C-20%2F3%2C6%7D%2C%7B0%2C0%2C1%2F5%7D%7D}{Wolfram|Alpha}.