mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
The commands find . -type f -name '*.md' -exec sed --in-place 's/[[:space:]]\+$//' {} \+ and find . -type f -name '*.tex' -exec sed --in-place 's/[[:space:]]\+$//' {} \+ were used to do so.
38 lines
1.5 KiB
TeX
38 lines
1.5 KiB
TeX
\documentclass{article}
|
|
\usepackage[pdftex,active,tightpage]{preview}
|
|
\setlength\PreviewBorder{2mm}
|
|
|
|
\usepackage[utf8]{inputenc} % this is needed for umlauts
|
|
\usepackage[ngerman]{babel} % this is needed for umlauts
|
|
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
|
\usepackage{amssymb,amsmath,amsfonts} % nice math rendering
|
|
\usepackage{braket} % needed for \Set
|
|
\usepackage{algorithm,algpseudocode}
|
|
|
|
\begin{document}
|
|
\begin{preview}
|
|
Sei $n \in \mathbb{N}_{\geq 1}$, $A \in \mathbb{R}^{n \times n}$ und
|
|
positiv definit sowie symmetrisch.
|
|
|
|
Dann existiert eine Zerlegung $A = L \cdot L^T$, wobei $L$ eine
|
|
untere Dreiecksmatrix ist. Diese wird von folgendem Algorithmus
|
|
berechnet:
|
|
|
|
\begin{algorithm}[H]
|
|
\begin{algorithmic}
|
|
\Function{Cholesky}{$A \in \mathbb{R}^{n \times n}$}
|
|
\State $L = \Set{0} \in \mathbb{R}^{n \times n}$ \Comment{Initialisiere $L$}
|
|
\For{($k=1$; $\;k \leq n$; $\;k$++)}
|
|
\State $L_{k,k} = \sqrt{A_{k,k} - \sum_{i=1}^{k-1} L_{k,i}^2}$
|
|
\For{($i=k+1$; $\;i \leq n$; $\;i$++)}
|
|
\State $L_{i,k} = \frac{A_{i,k} - \sum_{j=1}^{k-1} L_{i,j} \cdot L_{k,j}}{L_{k,k}}$
|
|
\EndFor
|
|
\EndFor
|
|
\State \Return $L$
|
|
\EndFunction
|
|
\end{algorithmic}
|
|
\caption{Cholesky-Zerlegung}
|
|
\label{alg:seq1}
|
|
\end{algorithm}
|
|
\end{preview}
|
|
\end{document}
|