2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-19 11:38:05 +02:00
LaTeX-examples/presentations/English/LaTeX/PageRank.tex
2013-01-24 20:08:38 +01:00

88 lines
3.4 KiB
TeX

\subsection{Idea}
\begin{frame}{Basics}
\begin{itemize}[<+->]
\item Humans know what is good for them
\item Humans create Websites
\item Humans will only \href{http://en.wikipedia.org/wiki/Hyperlink}{link} to Websites they like
\item[$\Rightarrow$] Hyperlinks are a quality indicator
\end{itemize}
\end{frame}
\begin{frame}{How could we use that?}
\begin{itemize}[<+->]
\item Simply count number of links to a Website
\item[\xmark] 10,000 links from only one page
\item Count numbers of Websites that link to a Website
\item[\xmark] Quality of the page matters
\item[\xmark] Total number of links on the source page matters
\end{itemize}
\end{frame}
\framedgraphic{A brilliant idea}{../images/BrinPage.jpg}
\begin{frame}{Ideas of PageRank}
\begin{itemize}[<+->]
\item Decisions of humans are complicated
\item A lot of webpages get visited
\item[$\Rightarrow$] modellize clicks on links as random behaviour
\item Links are important
\item Links of page A get less important, if A has many links
\item Links of page A get more important, if many link to A
\item[$\Rightarrow$] if B has a link from A, the rank of B increases by $\frac{Rank(A)}{Links(A)}$
\end{itemize}
\pause[\thebeamerpauses]
\begin{algorithmic}
\If{A links to B}
\State $Rank(B)$ += $\frac{Rank(A)}{Links(A)}$
\EndIf
\end{algorithmic}
\end{frame}
\begin{frame}{Ants}
\begin{itemize}[<+->]
\item Websites = nodes = anthill
\item Links = edges = paths
\item You place ants on each node
\item They walk over the paths
\item[] (at random, they are ants!)
\item After some time, some anthills will have more ants than
others
\item Those hills are more attractive than others
\item \# ants is probability that a random user would end on
a website
\end{itemize}
\end{frame}
\begin{frame}{Mathematics}
Let $x$ be a web page. Then
\begin{itemize}
\item $L(x)$ is the set of Websites that link to $x$
\item $C(y)$ is the out-degree of page $y$
\item $\alpha$ is probability of random jump
\item $N$ is the total number of websites
\end{itemize}
\[\displaystyle PR(x) := \alpha \left ( \frac{1}{N} \right ) + (1-\alpha) \sum_{y\in L(x)} \frac{PR(y)}{C_{y}}\]
\end{frame}
\begin{frame}{Pseudocode}
\begin{algorithmic}
\alertline<1> \Function{PageRank}{Graph $web$, double $q=0.15$, int $iterations$} %q is a damping factor
\alertline<2> \ForAll{$page \in G$}
\alertline<3> \State $page.pageRank = \frac{1}{|G|}$ \Comment{intial probability}
\alertline<2> \EndFor
\alertline<4> \While{$iterations > 0$}
\alertline<5> \ForAll{$page \in G$} \Comment{calculate pageRank of $page$}
\alertline<6> \State $page.pageRank = q$
\alertline<7> \ForAll{$y \in L(page)$}
\alertline<8> \State $page.pageRank$ += $\frac{y.pageRank}{C(y)}$
\alertline<7> \EndFor
\alertline<5> \EndFor
\alertline<4> \State $iterations$ -= $1$
\alertline<4> \EndWhile
\alertline<1> \EndFunction
\end{algorithmic}
\end{frame}