mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
117 lines
6.6 KiB
TeX
117 lines
6.6 KiB
TeX
\documentclass[a4paper]{article}
|
|
\usepackage[margin=20mm]{geometry}
|
|
\usepackage[english]{babel}
|
|
\usepackage[utf8]{inputenc}
|
|
\usepackage{amssymb,amsmath}
|
|
\usepackage{slashbox}
|
|
\usepackage{booktabs}
|
|
\usepackage[table,x11names]{xcolor}
|
|
\usepackage{pgfplots}
|
|
|
|
\setlength{\intextsep}{1pt}
|
|
|
|
\begin{document}
|
|
\pagenumbering{gobble}
|
|
\section*{Cumulative distribution function (CDF) of the normal distribution}
|
|
|
|
\pgfmathdeclarefunction{gauss}{3}{%
|
|
\pgfmathparse{1/(#3*sqrt(2*pi))*exp(-((#1-#2)^2)/(2*#3^2))}%
|
|
}
|
|
|
|
\begin{figure}[!h]
|
|
\centering
|
|
\begin{tikzpicture}
|
|
\begin{axis}[
|
|
no markers,
|
|
domain=0:6,
|
|
samples=100,
|
|
ymin=0,
|
|
axis lines*=left,
|
|
xlabel=$x$,
|
|
every axis y label/.style={at=(current axis.above origin),anchor=south},
|
|
every axis x label/.style={at=(current axis.right of origin),anchor=west},
|
|
height=4cm,
|
|
width=12cm,
|
|
xtick=\empty,
|
|
ytick=\empty,
|
|
enlargelimits=false,
|
|
clip=false,
|
|
axis on top,
|
|
grid = major,
|
|
hide y axis
|
|
]
|
|
|
|
\addplot [very thick,cyan!50!black] {gauss(x, 3, 1)};
|
|
|
|
\pgfmathsetmacro\valueA{gauss(1,3,1)}
|
|
\pgfmathsetmacro\valueB{gauss(2,3,1)}
|
|
\draw [gray] (axis cs:1,0) -- (axis cs:1,\valueA)
|
|
(axis cs:5,0) -- (axis cs:5,\valueA);
|
|
\draw [gray] (axis cs:2,0) -- (axis cs:2,\valueB)
|
|
(axis cs:4,0) -- (axis cs:4,\valueB);
|
|
\draw [yshift=1.4cm, latex-latex](axis cs:2, 0) -- node [fill=white] {$0.683$} (axis cs:4, 0);
|
|
\draw [yshift=0.3cm, latex-latex](axis cs:1, 0) -- node [fill=white] {$0.954$} (axis cs:5, 0);
|
|
|
|
\node[below] at (axis cs:1, 0) {$\mu - 2\sigma$};
|
|
\node[below] at (axis cs:2, 0) {$\mu - \sigma$};
|
|
\node[below] at (axis cs:3, 0) {$\mu$};
|
|
\end{axis}
|
|
\end{tikzpicture}
|
|
\end{figure}
|
|
|
|
\begin{table}[!h]
|
|
\centering
|
|
\begin{tabular}{c|ccccc|ccccc}
|
|
\toprule
|
|
\backslashbox{$x$}{$\Delta x$} & \textbf{0.00} & \textbf{0.01} & \textbf{0.02} & \textbf{0.03} & \textbf{0.04} & \textbf{0.05} & \textbf{0.06} & \textbf{0.07} & \textbf{0.08} & \textbf{0.09} \\\midrule
|
|
\rowcolor{lightgray}\textbf{0.0} & 0.5000 & 0.5040 & 0.5080 & 0.5120 & 0.5160 & 0.5199 & 0.5239 & 0.5279 & 0.5319 & 0.5359\\
|
|
\textbf{0.1} & 0.5398 & 0.5438 & 0.5478 & 0.5517 & 0.5557 & 0.5596 & 0.5636 & 0.5675 & 0.5714 & 0.5753\\
|
|
\textbf{0.2} & 0.5793 & 0.5832 & 0.5871 & 0.5910 & 0.5948 & 0.5987 & 0.6026 & 0.6064 & 0.6103 & 0.6141\\
|
|
\textbf{0.3} & 0.6179 & 0.6217 & 0.6255 & 0.6293 & 0.6331 & 0.6368 & 0.6406 & 0.6443 & 0.6480 & 0.6517\\
|
|
\textbf{0.4} & 0.6554 & 0.6591 & 0.6628 & 0.6664 & 0.6700 & 0.6736 & 0.6772 & 0.6808 & 0.6844 & 0.6879\\
|
|
\rowcolor{lightgray}\textbf{0.5} & 0.6915 & 0.6950 & 0.6985 & 0.7019 & 0.7054 & 0.7088 & 0.7123 & 0.7157 & 0.7190 & 0.7224\\
|
|
\textbf{0.6} & 0.7257 & 0.7291 & 0.7324 & 0.7357 & 0.7389 & 0.7422 & 0.7454 & 0.7486 & 0.7517 & 0.7549\\
|
|
\textbf{0.7} & 0.7580 & 0.7611 & 0.7642 & 0.7673 & 0.7704 & 0.7734 & 0.7764 & 0.7794 & 0.7823 & 0.7852\\
|
|
\textbf{0.8} & 0.7881 & 0.7910 & 0.7939 & 0.7967 & 0.7995 & 0.8023 & 0.8051 & 0.8078 & 0.8106 & 0.8133\\
|
|
\textbf{0.9} & 0.8159 & 0.8186 & 0.8212 & 0.8238 & 0.8264 & 0.8289 & 0.8315 & 0.8340 & 0.8365 & 0.8389\\
|
|
\rowcolor{lightgray}\textbf{1.0} & 0.8413 & 0.8438 & 0.8461 & 0.8485 & 0.8508 & 0.8531 & 0.8554 & 0.8577 & 0.8599 & 0.8621\\
|
|
\textbf{1.1} & 0.8643 & 0.8665 & 0.8686 & 0.8708 & 0.8729 & 0.8749 & 0.8770 & 0.8790 & 0.8810 & 0.8830\\
|
|
\textbf{1.2} & 0.8849 & 0.8869 & 0.8888 & 0.8907 & 0.8925 & 0.8944 & 0.8962 & 0.8980 & 0.8997 & 0.9015\\
|
|
\textbf{1.3} & 0.9032 & 0.9049 & 0.9066 & 0.9082 & 0.9099 & 0.9115 & 0.9131 & 0.9147 & 0.9162 & 0.9177\\
|
|
\textbf{1.4} & 0.9192 & 0.9207 & 0.9222 & 0.9236 & 0.9251 & 0.9265 & 0.9279 & 0.9292 & 0.9306 & 0.9319\\
|
|
\rowcolor{lightgray}\textbf{1.5} & 0.9332 & 0.9345 & 0.9357 & 0.9370 & 0.9382 & 0.9394 & 0.9406 & 0.9418 & 0.9429 & 0.9441\\
|
|
\textbf{1.6} & 0.9452 & 0.9463 & 0.9474 & 0.9484 & 0.9495 & 0.9505 & 0.9515 & 0.9525 & 0.9535 & 0.9545\\
|
|
\textbf{1.7} & 0.9554 & 0.9564 & 0.9573 & 0.9582 & 0.9591 & 0.9599 & 0.9608 & 0.9616 & 0.9625 & 0.9633\\
|
|
\textbf{1.8} & 0.9641 & 0.9649 & 0.9656 & 0.9664 & 0.9671 & 0.9678 & 0.9686 & 0.9693 & 0.9699 & 0.9706\\
|
|
\textbf{1.9} & 0.9713 & 0.9719 & 0.9726 & 0.9732 & 0.9738 & 0.9744 & 0.9750 & 0.9756 & 0.9761 & 0.9767\\
|
|
\rowcolor{lightgray}\textbf{2.0} & 0.9772 & 0.9778 & 0.9783 & 0.9788 & 0.9793 & 0.9798 & 0.9803 & 0.9808 & 0.9812 & 0.9817\\
|
|
\textbf{2.1} & 0.9821 & 0.9826 & 0.9830 & 0.9834 & 0.9838 & 0.9842 & 0.9846 & 0.9850 & 0.9854 & 0.9857\\
|
|
\textbf{2.2} & 0.9861 & 0.9864 & 0.9868 & 0.9871 & 0.9875 & 0.9878 & 0.9881 & 0.9884 & 0.9887 & 0.9890\\
|
|
\textbf{2.3} & 0.9893 & 0.9896 & 0.9898 & 0.9901 & 0.9904 & 0.9906 & 0.9909 & 0.9911 & 0.9913 & 0.9916\\
|
|
\textbf{2.4} & 0.9918 & 0.9920 & 0.9922 & 0.9925 & 0.9927 & 0.9929 & 0.9931 & 0.9932 & 0.9934 & 0.9936\\
|
|
\rowcolor{lightgray}\textbf{2.5} & 0.9938 & 0.9940 & 0.9941 & 0.9943 & 0.9945 & 0.9946 & 0.9948 & 0.9949 & 0.9951 & 0.9952\\
|
|
\textbf{2.6} & 0.9953 & 0.9955 & 0.9956 & 0.9957 & 0.9959 & 0.9960 & 0.9961 & 0.9962 & 0.9963 & 0.9964\\
|
|
\textbf{2.7} & 0.9965 & 0.9966 & 0.9967 & 0.9968 & 0.9969 & 0.9970 & 0.9971 & 0.9972 & 0.9973 & 0.9974\\
|
|
\textbf{2.8} & 0.9974 & 0.9975 & 0.9976 & 0.9977 & 0.9977 & 0.9978 & 0.9979 & 0.9979 & 0.9980 & 0.9981\\
|
|
\textbf{2.9} & 0.9981 & 0.9982 & 0.9982 & 0.9983 & 0.9984 & 0.9984 & 0.9985 & 0.9985 & 0.9986 & 0.9986\\
|
|
\rowcolor{lightgray}\textbf{3.0} & 0.9987 & 0.9987 & 0.9987 & 0.9988 & 0.9988 & 0.9989 & 0.9989 & 0.9989 & 0.9990 & 0.9990\\
|
|
\textbf{3.1} & 0.9990 & 0.9991 & 0.9991 & 0.9991 & 0.9992 & 0.9992 & 0.9992 & 0.9992 & 0.9993 & 0.9993\\
|
|
\textbf{3.2} & 0.9993 & 0.9993 & 0.9994 & 0.9994 & 0.9994 & 0.9994 & 0.9994 & 0.9995 & 0.9995 & 0.9995\\
|
|
\textbf{3.3} & 0.9995 & 0.9995 & 0.9995 & 0.9996 & 0.9996 & 0.9996 & 0.9996 & 0.9996 & 0.9996 & 0.9997\\
|
|
\textbf{3.4} & 0.9997 & 0.9997 & 0.9997 & 0.9997 & 0.9997 & 0.9997 & 0.9997 & 0.9997 & 0.9997 & 0.9998\\
|
|
\rowcolor{lightgray}\textbf{3.5} & 0.9998 & 0.9998 & 0.9998 & 0.9998 & 0.9998 & 0.9998 & 0.9998 & 0.9998 & 0.9998 & 0.9998\\
|
|
\textbf{3.6} & 0.9998 & 0.9998 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999\\
|
|
\textbf{3.7} & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999\\
|
|
\textbf{3.8} & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999 & 0.9999\\
|
|
\textbf{3.9} & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000\\
|
|
\bottomrule
|
|
\end{tabular}
|
|
\caption{Approximations of $\Phi_{0;1}(x + \Delta x)$}
|
|
\end{table}
|
|
\begin{align*}
|
|
\Phi_{0;1}(x) &= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{- t^2 / 2} \mathrm{d} t &
|
|
\Phi_{0;1}(1.65) &\approx 0.9505\\
|
|
\Phi_{\mu; \sigma^2}(x) &= \Phi_{0;1} \left (\frac{x-\mu}{\sigma} \right ) &
|
|
\Phi_{0;1}(-x) &= 1 - \Phi_{0;1}(x)
|
|
\end{align*}
|
|
\end{document}
|