mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-25 06:18:05 +02:00
120 lines
5 KiB
TeX
120 lines
5 KiB
TeX
\chapter{Linear function}
|
|
\section{Defined on $\mdr$}
|
|
Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
|
|
$t \in \mdr$ be a linear function.
|
|
|
|
\begin{figure}[htp]
|
|
\centering
|
|
\begin{tikzpicture}
|
|
\begin{axis}[
|
|
legend pos=north east,
|
|
legend cell align=left,
|
|
axis x line=middle,
|
|
axis y line=middle,
|
|
grid = major,
|
|
width=0.8\linewidth,
|
|
height=8cm,
|
|
grid style={dashed, gray!30},
|
|
xmin= 0, % start the diagram at this x-coordinate
|
|
xmax= 5, % end the diagram at this x-coordinate
|
|
ymin= 0, % start the diagram at this y-coordinate
|
|
ymax= 3, % end the diagram at this y-coordinate
|
|
axis background/.style={fill=white},
|
|
xlabel=$x$,
|
|
ylabel=$y$,
|
|
tick align=outside,
|
|
minor tick num=-3,
|
|
enlargelimits=true,
|
|
tension=0.08]
|
|
\addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
|
|
\addplot[domain=-5:5, thick,samples=50, blue, dashed] {-2*x+6};
|
|
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
|
|
\addplot[blue, nodes near coords=$f_\bot$,every node near coord/.style={anchor=225}] coordinates {(1.5, 3)};
|
|
\addplot[red, nodes near coords=$f$,every node near coord/.style={anchor=225}] coordinates {(0.9, 0.5)};
|
|
\addlegendentry{$f(x)=\frac{1}{2}x$}
|
|
\addlegendentry{$f_\bot(x)=-2x+6$}
|
|
\end{axis}
|
|
\end{tikzpicture}
|
|
\caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular}
|
|
\label{fig:linear-min-distance}
|
|
\end{figure}
|
|
|
|
Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The
|
|
slope of $f_\bot$ is $- \frac{1}{m}$ and $t_\bot$ can be calculated:\nobreak
|
|
\begin{align}
|
|
f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
|
|
\Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
|
|
\Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P
|
|
\end{align}
|
|
|
|
The point $(x, f(x))$ where the perpendicular $f_\bot$ crosses $f$
|
|
is calculated this way:
|
|
\begin{align}
|
|
f(x) &= f_\bot(x)\\
|
|
\Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
|
|
\Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
|
|
\Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\label{eq:solution-of-the-linear-problem}
|
|
\end{align}
|
|
|
|
There is only one point with minimal distance. I'll call the result
|
|
from line~\ref{eq:solution-of-the-linear-problem} \enquote{solution of
|
|
the linear problem} and the function that gives this solution
|
|
$S_1(f,P)$.
|
|
|
|
See Figure~\ref{fig:linear-min-distance}
|
|
to get intuition about the geometry used.
|
|
\clearpage
|
|
|
|
\section{Defined on a closed interval $[a,b] \subseteq \mdr$}
|
|
Let $f:[a,b] \rightarrow \mdr$, $f(x) := m\cdot x + t$ with $a,b,m,t \in \mdr$ and
|
|
$a \leq b$, $m \neq 0$ be a linear function.
|
|
|
|
\begin{figure}[htp]
|
|
\centering
|
|
\begin{tikzpicture}
|
|
\begin{axis}[
|
|
legend pos=north east,
|
|
legend cell align=left,
|
|
axis x line=middle,
|
|
axis y line=middle,
|
|
grid = major,
|
|
width=0.8\linewidth,
|
|
height=8cm,
|
|
grid style={dashed, gray!30},
|
|
xmin= 0, % start the diagram at this x-coordinate
|
|
xmax= 5, % end the diagram at this x-coordinate
|
|
ymin= 0, % start the diagram at this y-coordinate
|
|
ymax= 3, % end the diagram at this y-coordinate
|
|
axis background/.style={fill=white},
|
|
xlabel=$x$,
|
|
ylabel=$y$,
|
|
tick align=outside,
|
|
minor tick num=-3,
|
|
enlargelimits=true,
|
|
tension=0.08]
|
|
\addplot[domain= 2:3, thick,samples=50, red] {0.5*x};
|
|
\addplot[domain=-5:5, thick,samples=50, blue, dashed] {-2*x+6};
|
|
\addplot[domain=1:1.5, thick, samples=50, orange] {3*x-3};
|
|
\addplot[domain=4:5, thick, samples=50, green] {-x+5};
|
|
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
|
|
\draw[thick, dashed] (axis cs:2,2) -- (axis cs:1.5,1.5);
|
|
\draw[thick, dashed] (axis cs:2,2) -- (axis cs:4,1);
|
|
\addlegendentry{$f(x)=\frac{1}{2}x, D = [2,3]$}
|
|
\addlegendentry{$f_\bot(x)=-2x+6, D=[-5,5]$}
|
|
\addlegendentry{$h(x)=3x-3, D=[1,1.5]$}
|
|
\addlegendentry{$h(x)=-x+5, D=[4,5]$}
|
|
\end{axis}
|
|
\end{tikzpicture}
|
|
\caption{Different situations when you have linear functions which
|
|
are defined on a closed intervall}
|
|
\label{fig:linear-min-distance-closed-intervall}
|
|
\end{figure}
|
|
|
|
The point with minimum distance can be found by:
|
|
\[\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} = \begin{cases}
|
|
S_1(f, P) &\text{if } S_1(f, P) \cap [a,b] \neq \emptyset\\
|
|
\Set{a} &\text{if } S_1(f, P) \ni x < a\\
|
|
\Set{b} &\text{if } S_1(f, P) \ni x > b
|
|
\end{cases}\]
|
|
|
|
\todo[inline]{argument? proof?}
|