mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
230 lines
7.6 KiB
TeX
230 lines
7.6 KiB
TeX
%!TEX root = Sommerakademie-2015-Forschung.tex
|
|
\section{Einleitung}
|
|
\subsection{Was ist On-Line Recognition?}
|
|
|
|
\begin{frame}{Demo}
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics*[width=0.7\linewidth, keepaspectratio]{images/Classification.png}
|
|
\end{figure}
|
|
|
|
\href{http://write-math.com}{write-math.com}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Was ist On-Line Recognition?}
|
|
\medskip
|
|
\begin{columns}[t,onlytextwidth]
|
|
\begin{column}{.5\textwidth}
|
|
{\Large Off-line Recognition}
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics*[width=0.7\linewidth, keepaspectratio]{images/A-pixel.png}
|
|
\end{figure}
|
|
\end{column}
|
|
\begin{column}{.5\textwidth}
|
|
{\Large On-line Recognition}
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics*[width=0.7\linewidth, keepaspectratio]{images/A-vektor.png}
|
|
\end{figure}
|
|
\end{column}
|
|
\end{columns}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Was wollen wir?}
|
|
\[f(\text{Merkmale}) = \begin{pmatrix}0.7\\ 0.1\\ 0.2\end{pmatrix} = \begin{pmatrix} \mathbb{P}(\gamma)\\ \mathbb{P}(\text{ö})\\ \mathbb{P}(\heartsuit) \end{pmatrix}\]
|
|
\medskip
|
|
\visible<2->{
|
|
\begin{center}
|
|
{\Large Gesucht: Funktion $f$}\\
|
|
(und Merkmalsextraktion)
|
|
}
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Merkmalsextraktion}
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics*[width=0.7\linewidth, keepaspectratio]{images/A-vektor-merkmalsbildung.png}
|
|
\end{figure}
|
|
|
|
Merkmalsvektor fester Länge ist praktisch
|
|
\end{frame}
|
|
|
|
\section{Funktionen}
|
|
\subsection{Funktionen}
|
|
|
|
\begin{frame}{Funktionen}
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics*[width=0.7\linewidth, keepaspectratio]{images/function-machine.png}
|
|
\end{figure}
|
|
\end{frame}
|
|
\begin{frame}{Funktionen}
|
|
\medskip
|
|
\begin{columns}[t,onlytextwidth]
|
|
\begin{column}{.5\textwidth}{
|
|
\begin{itemize}[<+->]
|
|
\item $f(x) = x^2$ ist $f: \mathbb{R} \rightarrow \mathbb{R}$
|
|
\item $f(x, y) = x^2 + y^2$ ist $f: \mathbb{R}^2 \rightarrow \mathbb{R}$
|
|
\item $f(x, y) = (x^2 + y^2, x \cdot y)$ ist $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$
|
|
\end{itemize}
|
|
}
|
|
\end{column}
|
|
\begin{column}{.4\textwidth}
|
|
\only<1>{
|
|
\begin{tikzpicture}
|
|
\begin{axis}[
|
|
legend pos=south west,
|
|
axis x line=middle,
|
|
axis y line=middle,
|
|
grid = major,
|
|
width=6.5cm,
|
|
height=6.5cm,
|
|
grid style={dashed, gray!30},
|
|
xmin=-2, % start the diagram at this x-coordinate
|
|
xmax= 2, % end the diagram at this x-coordinate
|
|
ymin=-0.25, % start the diagram at this y-coordinate
|
|
ymax= 4.25, % end the diagram at this y-coordinate
|
|
axis background/.style={fill=white},
|
|
xlabel=$x \in \mathbb{R}$,
|
|
ylabel=$f(x) \in \mathbb{R}$,
|
|
%xticklabels={-2,-1.6,...,7},
|
|
%yticklabels={-8,-7,...,8},
|
|
tick align=outside,
|
|
minor tick num=-3,
|
|
enlargelimits=true,
|
|
tension=0.08]
|
|
\addplot[domain=-2:2, red, thick,samples=40] {x*x};
|
|
\end{axis}
|
|
\end{tikzpicture}
|
|
}
|
|
\only<2->{
|
|
\pgfplotsset{
|
|
colormap={whitered}{
|
|
color(0cm)=(white);
|
|
color(1cm)=(orange!75!red)
|
|
}
|
|
}
|
|
\begin{tikzpicture}
|
|
\begin{axis}[
|
|
colormap name=whitered,
|
|
width=5.5cm,
|
|
height=5.5cm,
|
|
view={340}{25},
|
|
enlargelimits=false,
|
|
grid=major,
|
|
domain=-3:3,
|
|
y domain=-3:3,
|
|
samples=56, %57 : TeX capacity exceeded, sorry [main memory size=3000000].
|
|
% see also http://tex.stackexchange.com/a/7954/5645
|
|
xlabel=$x$,
|
|
ylabel=$y$,
|
|
zlabel={$f(x,y)$},
|
|
]
|
|
\addplot3[surf] {x^2 + y^2};
|
|
\end{axis}
|
|
\end{tikzpicture}
|
|
}
|
|
\end{column}
|
|
\end{columns}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Funktionen mit Parametern}
|
|
\begin{columns}
|
|
\begin{column}{.5\textwidth}
|
|
{\Large Mit Parametern}
|
|
\begin{itemize}[<+->]
|
|
\item $f(x) = x^2$
|
|
\item $f(x) = 2 \cdot x^2$
|
|
\item $f(x) = \nicefrac{1}{2} \cdot x^2$
|
|
\item $f(x) = a \cdot x^2$
|
|
\item $f(x_1, \dots, x_{166}) = \sum_{i=1}^{166} a_i \cdot x_i$\\
|
|
$\mathbb{R}^{166} \rightarrow \mathbb{R}$
|
|
\item $f(x_1, \dots, x_{166}) = (\sum_{i=1}^{166} a_i \cdot x_i, \dots, \sum_{i=1}^{166} z_i \cdot x_i)$\\
|
|
$\mathbb{R}^{166} \rightarrow \mathbb{R}^{\text(\# Klassen)}$
|
|
\end{itemize}
|
|
\end{column}
|
|
\begin{column}{.4\textwidth}
|
|
\begin{tikzpicture}
|
|
\begin{axis}[
|
|
legend pos=south west,
|
|
axis x line=middle,
|
|
axis y line=middle,
|
|
grid = major,
|
|
width=6.5cm,
|
|
height=6.5cm,
|
|
grid style={dashed, gray!30},
|
|
xmin=-2, % start the diagram at this x-coordinate
|
|
xmax= 2, % end the diagram at this x-coordinate
|
|
ymin=-0.25, % start the diagram at this y-coordinate
|
|
ymax= 4.25, % end the diagram at this y-coordinate
|
|
axis background/.style={fill=white},
|
|
xlabel=$x \in \mathbb{R}$,
|
|
ylabel=$f(x) \in \mathbb{R}$,
|
|
%xticklabels={-2,-1.6,...,7},
|
|
%yticklabels={-8,-7,...,8},
|
|
tick align=outside,
|
|
minor tick num=-3,
|
|
enlargelimits=true,
|
|
tension=0.08]
|
|
\only<1->{\addplot[domain=-2:2, red, thick,samples=40] {x*x};}
|
|
\only<2->{\addplot[domain=-2:2, blue, thick,samples=40] {2*x*x};}
|
|
\only<3->{\addplot[domain=-2:2, green, thick,samples=40] {0.5*x*x};}
|
|
\end{axis}
|
|
\end{tikzpicture}
|
|
\end{column}
|
|
\end{columns}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Fehlerfunktion}
|
|
\begin{itemize}[<+->]
|
|
\item \textbf{Daten $(x_{i,1}, \dots, x_{i,n}, y_{i,1}, \dots, y_{i,\text{\# Klassen}})$}: Beispiele für den Computer
|
|
\item \textbf{Aktuelles Modell $f$}: Funktion mit vielen Parametern
|
|
\item \textbf{Fehlerfunktion}: Wie gut ist $f$ für die vorhandenen
|
|
Daten?
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Fehlerfunktion}
|
|
Abbildung von \textbf{Parameterraum} auf den Fehler ($\mathbb{R}_0^+$)
|
|
\end{frame}
|
|
|
|
\begin{frame}{Minimieren mit Ableitungen}
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics*[width=0.7\linewidth, keepaspectratio]{images/derivative-function.png}
|
|
\end{figure}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Gradientenabstieg}
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics*[width=0.7\linewidth, keepaspectratio]{images/gradient-descent.png}
|
|
\end{figure}
|
|
\end{frame}
|
|
|
|
|
|
\section{Neuronale Netze}
|
|
\subsection{Neuronale Netze}
|
|
\begin{frame}{Neuronale Netze}{}
|
|
\begin{itemize}[<+->]
|
|
\item Menge von parametrisierten Funktionen
|
|
$\mathbb{R}^n \rightarrow \mathbb{R}^{\text(\# Klassen)}$
|
|
\item $\mathbb{R}^n$: Eingabe,\\z.B. Farbe von Pixel~1, Farbe von Pixel~2, \dots
|
|
\item $\mathbb{R}^{\text(\# Klassen)}$: Ausgabe,\\Wahrscheinlichkeit der Klasse (z.B. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
|
|
\item Ableitbar
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\section{Ausblick}
|
|
\subsection{Ausblick}
|
|
\begin{frame}{Ausblick}
|
|
Erkennung von Formeln
|
|
\begin{itemize}[<+->]
|
|
\item Aufbau eines Sprachmodells der Mathematik
|
|
\item Erweiterung der Symboldatenbank
|
|
\item Segmentierung
|
|
\end{itemize}
|
|
\end{frame}
|
|
|