2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-19 11:38:05 +02:00
LaTeX-examples/documents/math-minimal-distance-to-cubic-function/constant-functions.tex
Martin Thoma 7740f0147f Remove trailing spaces
The commands

find . -type f -name '*.md' -exec sed --in-place 's/[[:space:]]\+$//' {} \+

and

find . -type f -name '*.tex' -exec sed --in-place 's/[[:space:]]\+$//' {} \+

were used to do so.
2015-10-14 14:25:34 +02:00

139 lines
5.9 KiB
TeX

\chapter{Constant functions}
\section{Defined on $\mdr$}
\begin{lemma}
Let $f:\mdr \rightarrow \mdr$, $f(x) := c$ with $c \in \mdr$ be a constant function.
Then $(x_P, f(x_P))$ is the only point on the graph of $f$ with
minimal distance to $P$.
\end{lemma}
The situation can be seen in Figure~\ref{fig:constant-min-distance}.
\begin{figure}[htp]
\centering
\begin{tikzpicture}
\begin{axis}[
legend pos=north west,
legend cell align=left,
axis x line=middle,
axis y line=middle,
grid = major,
width=0.8\linewidth,
height=8cm,
grid style={dashed, gray!30},
xmin=-5, % start the diagram at this x-coordinate
xmax= 5, % end the diagram at this x-coordinate
ymin= 0, % start the diagram at this y-coordinate
ymax= 3, % end the diagram at this y-coordinate
axis background/.style={fill=white},
xlabel=$x$,
ylabel=$y$,
tick align=outside,
minor tick num=-3,
enlargelimits=true,
tension=0.08]
\addplot[domain=-5:5, thick,samples=50, red] {1};
\addplot[domain=-5:5, thick,samples=50, green] {2};
\addplot[domain=-5:5, thick,samples=50, blue, densely dotted] {3};
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
\addplot[blue, mark = *, nodes near coords=$P_{h,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(2, 3)};
\addplot[green, mark = x, nodes near coords=$P_{g,\text{min}}$,every node near coord/.style={anchor=120}] coordinates {(2, 2)};
\addplot[red, mark = *, nodes near coords=$P_{f,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(2, 1)};
\draw[thick, dashed] (axis cs:2,0) -- (axis cs:2,3);
\addlegendentry{$f(x)=1$}
\addlegendentry{$g(x)=2$}
\addlegendentry{$h(x)=3$}
\end{axis}
\end{tikzpicture}
\caption{Three constant functions and their points with minimal distance}
\label{fig:constant-min-distance}
\end{figure}
\begin{proof}
The point $(x, f(x))$ with minimal distance can be calculated directly:
\begin{align}
d_{P,f}(x) &= \sqrt{(x - x_P)^2 + (f(x) - y_P)^2}\\
&= \sqrt{(x^2 - 2x_P x + x_P^2) + (c^2 - 2 c y_P + y_P^2)} \\
&= \sqrt{x^2 - 2 x_P x + (x_P^2 + c^2 - 2 c y_P + y_P^2)}\label{eq:constant-function-distance}\\
\xRightarrow{\text{Theorem}~\ref{thm:fermats-theorem}} 0 &\stackrel{!}{=} (d_{P,f}(x)^2)'\\
&= 2x - 2x_P\\
\Leftrightarrow x &\stackrel{!}{=} x_P
\end{align}
So $(x_P,f(x_P))$ is the only point with minimal distance to $P$. $\qed$
\end{proof}
This result means:
\[S_0(f, P) = \Set{x_P} \text{ with } P = (x_P, y_P)\]
\clearpage
\section{Defined on a closed interval $[a,b] \subseteq \mdr$}
\begin{theorem}[Solution formula for constant functions]
Let $f:[a,b] \rightarrow \mdr$, $f(x) := c$ with $a,b,c \in \mdr$ and
$a \leq b$ be a constant function.
Then the point $(x, f(x))$ of $f$ with minimal distance to $P$ is
given by:
\[\underset{x\in [a,b]}{\arg \min d_{P,f}(x)} = \begin{cases}
S_0(f,P) &\text{if } S_0(f,P) \cap [a,b] \neq \emptyset \\
\Set{a} &\text{if } S_0(f,P) \ni x_P < a\\
\Set{b} &\text{if } S_0(f,P) \ni x_P > b
\end{cases}\]
\end{theorem}
\begin{figure}[htp]
\centering
\begin{tikzpicture}
\begin{axis}[
legend pos=north west,
legend cell align=left,
axis x line=middle,
axis y line=middle,
grid = major,
width=0.8\linewidth,
height=8cm,
grid style={dashed, gray!30},
xmin=-5, % start the diagram at this x-coordinate
xmax= 5, % end the diagram at this x-coordinate
ymin= 0, % start the diagram at this y-coordinate
ymax= 3, % end the diagram at this y-coordinate
axis background/.style={fill=white},
xlabel=$x$,
ylabel=$y$,
tick align=outside,
minor tick num=-3,
enlargelimits=true,
tension=0.08]
\addplot[domain=-5:-2, thick,samples=50, red] {1};
\addplot[domain=-1:3, thick,samples=50, green] {1.5};
\addplot[domain=3:5, thick,samples=50, blue, densely dotted] {3};
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
\addplot[blue, mark = *, nodes near coords=$P_{h,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(3, 3)};
\addplot[green, mark = x, nodes near coords=$P_{g,\text{min}}$,every node near coord/.style={anchor=120}] coordinates {(2, 1.5)};
\addplot[red, mark = *, nodes near coords=$P_{f,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(-2, 1)};
\draw[thick, dashed] (axis cs:2,1.5) -- (axis cs:2,2);
\draw[thick, dashed] (axis cs:2,2) -- (axis cs:-2,1);
\draw[thick, dashed] (axis cs:2,2) -- (axis cs:3,3);
\addlegendentry{$f(x)=1, D = [-5,-2]$}
\addlegendentry{$g(x)=1.5, D = [-1,3]$}
\addlegendentry{$h(x)=3, D = [3,5]$}
\end{axis}
\end{tikzpicture}
\caption{Three constant functions and their points with minimal distance}
\label{fig:constant-min-distance-closed-intervall}
\end{figure}
\begin{proof}
\begin{align}
\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} &= \underset{x\in[a,b]}{\arg \min d_{P,f}(x)^2}\\
&=\underset{x\in[a,b]}{\arg \min} \big ((x-x_P)^2 + \overbrace{(y_P^2 - 2 y_P c + c^2)}^{\text{constant}} \big )\\
&=\underset{x\in[a,b]}{\arg \min} (x-x_P)^2
\end{align}
which is optimal for $x = x_P$, but if $x_P \notin [a,b]$, you want
to make this term as small as possible. It gets as small as possible when
$x$ is as similar to $x_p$ as possible. This yields directly to the
solution formula.$\qed$
\end{proof}