\markboth{Symbolverzeichnis}{Symbolverzeichnis} \twocolumn \chapter*{Symbolverzeichnis} \addcontentsline{toc}{chapter}{Symbolverzeichnis} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Mengenoperationen % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section*{Mengenoperationen} $A^C\;\;\;$ Komplement der Menge $A$\\ $\mathcal{P}(M)\;\;\;$ Potenzmenge von $M$\\ $\overline{M}\;\;\;$ Abschluss der Menge $M$\\ $\partial M\;\;\;$ Rand der Menge $M$\\ $M^\circ\;\;\;$ Inneres der Menge $M$\\ $A \times B\;\;\;$ Kreuzprodukt zweier Mengen\\ $A \subseteq B\;\;\;$ Teilmengenbeziehung\\ $A \subsetneq B\;\;\;$ echte Teilmengenbeziehung\\ $A \setminus B\;\;\;$ $A$ ohne $B$\\ $A \cup B\;\;\;$ Vereinigung\\ $A \dcup B\;\;\;$ Disjunkte Vereinigung\\ $A \cap B\;\;\;$ Schnitt\\ \section*{Geometrie} $AB\;\;\;$ Gerade durch die Punkte $A$ und $B$\\ $\overline{AB}\;\;\;$ Strecke mit Endpunkten $A$ und $B$\\ $\triangle ABC\;\;\;$ Dreieck mit Eckpunkten $A, B, C$\\ $|K|\;\;\;$ Geometrische Realisierung des Simplizialkomplexes $K$\\ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Gruppen % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section*{Gruppen} $\Homoo(X)\;\;\;$ Homöomorphismengruppe\\ $\Iso(X)\;\;\;$ Isometriengruppe\\ $\GL_n(K)\;\;\;$ Allgemeine lineare Gruppe\footnote{von \textit{\textbf{G}eneral \textbf{L}inear Group}}\\ $\SL_n(K)\;\;\;$ Spezielle lineare Gruppe\\ $\PSL_n(K)\;\;\;$ Projektive lineare Gruppe\\ $\Perm(X)\;\;\;$ Permutationsgruppe\\ $\Sym(X)\;\;\;$ Symmetrische Gruppe %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Gruppen % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section*{Wege} $[\gamma]\;\;\;$ Homotopieklasse eines Weges $\gamma$\\ $\gamma_1 * \gamma_2\;\;\;$ Zusammenhängen von Wegen\\ $\gamma_1 \sim \gamma_2\;\;\;$ Homotopie von Wegen\\ $\overline{\gamma}(x) = \gamma(1-x)\;\;\;$ Inverser Weg\\ $C := \gamma([0,1])\;\;\;$ Bild eines Weges $\gamma$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Weiteres % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section*{Weiteres} $\fB\;\;\;$ Basis einer Topologie\\ $\calS\;\;\;$ Subbasis einer Topologie\\ $\fB_\delta(x)\;\;\;$ $\delta$-Kugel um $x$\\ $\fT\;\;\;$ Topologie\\ $\atlas\;\;\;$ Atlas\\ $\praum\;\;\;$ Projektiver Raum\\ $\langle \cdot , \cdot \rangle\;\;\;$ Skalarprodukt\\ $X /_\sim\;\;\;$ $X$ modulo $\sim$\\ $[x]_\sim\;\;\;$ Äquivalenzklassen von $x$ bzgl. $\sim$\\ $\| x \|\;\;\;$ Norm von $x$\\ $| x |\;\;\;$ Betrag von $x$\\ $\langle a \rangle\;\;\;$ Erzeugnis von $a$\\ $S^n\;\;\;$ Sphäre\\ $T^n\;\;\;$ Torus\\ $f \circ g\;\;\;$ Verkettung von $f$ und $g$\\ $\pi_X\;\;\;$ Projektion auf $X$\\ $f|_U\;\;\;$ $f$ eingeschränkt auf $U$\\ $f^{-1}(M)\;\;\;$ Urbild von $M$\\ $\rang(M)\;\;\;$ Rang von $M$\\ $\chi(K)\;\;\;$ Euler-Charakteristik von $K$\\ $\Delta^k\;\;\;$ Standard-Simplex\\ $X \# Y\;\;\;$ Verklebung von $X$ und $Y$\\ $d_n\;\;\;$ Lineare Abbildung aus \cref{kor:9.11}\\ $A \cong B\;\;\;$ $A$ ist isometrisch zu $B$ \onecolumn %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Zahlenmengen % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section*{Zahlenmengen} $\mdn = \Set{1, 2, 3, \dots} \;\;\;$ Natürliche Zahlen\\ $\mdz = \mdn \cup \Set{0, -1, -2, \dots} \;\;\;$ Ganze Zahlen\\ $\mdq = \mdz \cup \Set{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}} = \Set{\frac{z}{n} \text{ mit } z \in \mdz \text{ und } n \in \mdz \setminus \Set{0}} \;\;\;$ Rationale Zahlen\\ $\mdr = \mdq \cup \Set{\sqrt{2}, -\sqrt[3]{3}, \dots}\;\;\;$ Reele Zahlen\\ $\mdr^+\;$ Echt positive reele Zahlen\\ $\mdr^\times = \mdr \setminus \Set{0} \;$ Einheitengruppe von $\mdr$\\ $\mdc = \Set{a+ib|a,b \in \mdr}\;\;\;$ Komplexe Zahlen\\ $\mdp = \Set{2, 3, 5, 7, \dots}\;\;\;$ Primzahlen\\ $\mdh = \Set{z \in \mdc | \Im{z} > 0}\;\;\;$ obere Halbebene\\ $I = [0,1] \subsetneq \mdr\;\;\;$ Einheitsintervall\\ $f:S^1 \hookrightarrow \mdr^2\;\;\;$ Einbettung der Kreislinie in die Ebene\\ $\pi_1(X,x)\;\;\;$ Fundamentalgruppe im topologischen Raum $X$ um $x \in X$\\ $\Fix(f)\;\;\;$ Menge der Fixpunkte der Abbildung $f$\\ $\|\cdot\|_2\;\;\;$ 2-Norm; Euklidische Norm\\ $\kappa\;\;\;$ Krümmung\\ $\kappa_{\ts{Nor}}$ $V(f)\;\;\;$ Nullstellenmenge von $f$\footnote{von \textit{\textbf{V}anishing Set}} \index{Faser|see{Urbild}} \index{kongruent|see{isometrisch}} \index{Kongruenz|see{Isometrie}}