import data from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D from keras.models import Sequential, load_model model = Sequential() model.add(Conv2D(16, (3, 3))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(16, (3, 3))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(data.n_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam') model.fit(data.x_train, data.y_train) model.save('model.h5') model = load_model('model.h5') y_predicted = model.predict(data.x_test)