\subsection{Neural Net experiments} \begin{frame}{Experiments} \textbf{Preprocessing:} Scaling, shifting and linear interpolation\\ \textbf{Features:} Coordinates of 80 points (4 strokes with 20 points each)\\ \textbf{Learning:} MLP, 300 epochs, LR of 0.1 \begin{itemize} \item[] \textit{toplogy \tabto{6cm} error in training time} \item 160:500:369 \tabto{6cm} 30.62 \% in \hphantom{0}9min 08s \item 160:500:500:369 \tabto{6cm} 27.73 \% in 11min 49s \item 160:500:500:500:369 \tabto{6cm} 34.79 \% in 14min 09s \item 160:500:500:500:500:369 \tabto{6cm} 33.61 \% in 14min 06s \end{itemize} \end{frame} \begin{frame}[fragile]{Examples of confusable symbols} \begin{table}[ht] \centering \begin{tabular}{lc|lc} \textbf{\LaTeX}& \textbf{Rendered} & \textbf{\LaTeX}& \textbf{Rendered} \\\midrule \verb+\sum+ & $\sum$ & \verb+$\Sigma$+ & $\Sigma$\\ \verb+\coprod+ & $\coprod$ & \verb+$\amalg$+ & $\amalg$\\ \verb+\perp+ & $\perp$ & \verb+$\bot$+ & $\bot$\\ \verb+\models+ & $\models$ & \verb+$\vDash$+ & $\vDash$\\ \verb+\emptyset+ & $\emptyset$ & \verb+$\diameter$+ & $\diameter$\\ ~ & ~ & \verb+$\o$+ & $\o$\\ ~ & ~ & \verb+$\varnothing$+ & $\varnothing$\\ \verb+\Delta+ & $\Delta$ & \verb+$\triangle$+ & $\triangle$\\ \verb+\varepsilon+ & $\varepsilon$ & \verb+$\mathcal{E}$+ & $\mathcal{E}$\\ \end{tabular} \end{table} When those confusions are not counted as errors, the current best system has an classification error rate of $12.7 \%$ (otherwise $22.2 \%$). \end{frame}