\documentclass[a4paper,10pt]{article} \usepackage{amssymb} \usepackage{amsmath} \DeclareMahOperator\arctanh{arctanh} \usepackage[utf8]{inputenc} % this is needed for umlauts \usepackage[ngerman]{babel} % this is needed for umlauts \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf %layout \usepackage[margin=2.5cm]{geometry} \usepackage{parskip} \pdfinfo{ /Author (Peter Merkert, Martin Thoma) /Title (Wichtige Formeln der Analysis I) /CreationDate (D:20120221095400) /Subject (Analysis I) /Keywords (Analysis I; Formeln) } \everymath={\displaystyle} \begin{document} \title{Analysis Formelsammlung} \author{Peter Merkert, Martin Thoma} \date{21. Februar 2012} \section{Grenzwerte} \begin{table}[ht] \begin{minipage}[b]{0.5\linewidth}\centering \begin{align*} \lim_{x \to 0} \frac {\sin x}{x} &= 1 \\ \lim_{x \to 0} \frac {e^x - 1}{x} &= 1 \\ \lim_{h \to 0} \frac {e^{{x_0} + h} - e^{x_0}}{h} &= e^{x_0} \\ \sum_{n = 0}^{\infty} (-1)^n \frac {(-1)^{n + 1}}{n} &= \log 2 \\ \cos x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n}}{(2n)!} \\ \sin x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n + 1}}{(2n + 1)!} \end{align*} \end{minipage} \hspace{0.5cm} \begin{minipage}[b]{0.5\linewidth} \centering \begin{align*} \cosh x = \frac {1}{2} (e^x + e^{-x}) &= \scriptstyle \sum_{n = 0}^{\infty} \frac {x^{2n}}{(2n)!} \\ \sinh x = \frac {1}{2} (e^x - e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n + 1}}{(2n + 1)!} \\ e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} \\ \sum_{n = 0}^{\infty} (-1)^n \frac {x^{n + 1}}{n + 1} &= \log (1+x) (x \in (-1,1)) \\ \sum_{n = 0}^{\infty} x^n &= \frac {1}{1 - x} (x \in (-1,1)) \\ 0,\bar{3} &= \sum_{n = 1}^{\infty} \frac {3}{(10)^n} \end{align*} \end{minipage} \end{table} \section{Zusammenhänge} \begin{align*} (\cos x)^2 + (\sin x)^2 &= 1 \\ (\cosh x)^2 - (\sinh x)^2 &= 1 \\ \tan x &= \frac {\sin x}{\cos x} \\ \tanh x &= \frac {\sinh x}{\cosh x} \\ (x + y)^n &= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \end{align*} \section{Ableitungen} \begin{align*} (\arctan x)' &= \frac {1}{1 + x^2} \\ (\sin x)' &= \cos x \\ (\cos x)' &= -\sin x \\ (\arctanh x)' &= \frac {1}{\sqrt {1 + x^2}} \end{align*} \section{Potenzreihen} Zuerst den Potenzradius r berechnen: \( r = \frac {1}{\lim \text{sup} \sqrt[n]{|a_n|}} \) \end{document}