\chapter{Cubic functions} \section{Defined on $\mdr$} Let $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ be a cubic function with $a \in \mdr \setminus \Set{0}$ and $b, c, d \in \mdr$ be a function. \begin{figure}[htp] \centering \begin{tikzpicture} \begin{axis}[ legend pos=south east, axis x line=middle, axis y line=middle, grid = major, width=0.8\linewidth, height=8cm, grid style={dashed, gray!30}, xmin=-3, % start the diagram at this x-coordinate xmax= 3, % end the diagram at this x-coordinate ymin=-3, % start the diagram at this y-coordinate ymax= 3, % end the diagram at this y-coordinate axis background/.style={fill=white}, xlabel=$x$, ylabel=$y$, tick align=outside, minor tick num=-3, enlargelimits=true, tension=0.08] \addplot[domain=-3:3, thick,samples=50, red] {x*x*x}; \addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x*x}; \addplot[domain=-3:3, thick,samples=50, blue] {x*x*x+2*x*x}; \addplot[domain=-3:3, thick,samples=50, orange] {x*x*x+x}; \addlegendentry{$f_1(x)=x^3$} \addlegendentry{$f_2(x)=x^3 + x^2$} \addlegendentry{$f_2(x)=x^3 + 2 \cdot x^2$} \addlegendentry{$f_1(x)=x^3 + x$} \end{axis} \end{tikzpicture} \caption{Cubic functions} \end{figure} % %\section{Special points} %\todo[inline]{Write this} % %\section{Voronoi} % %For $b^2 \geq 3ac$ % %\todo[inline]{Write this} \subsection{Calculate points with minimal distance} \begin{theorem} There cannot be an algebraic solution to the problem of finding a closest point $(x, f(x))$ to a given point $P$ when $f$ is a polynomial function of degree $3$ or higher. \end{theorem} \begin{proof} Suppose you could solve the closest point problem for arbitrary cubic functions $f = ax^3 + bx^2 + cx + d$ and arbitrary points $P = (x_P, y_P)$. Then you could solve the following problem for $x$: \begin{align} 0 &\stackrel{!}{=} \left ((d_{P,f}(x))^2 \right )' &=-2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\ &= 2 f(x) \cdot f'(x) - 2 y_p f'(x) + 2x - 2 x_p\\ &= f(x) \cdot f'(x) - y_p f'(x) + x - x_p\\ &= \underbrace{f'(x) \cdot \left (f(x) - y_p \right )}_{\text{Polynomial of degree 5}} + x - x_p \end{align} General algebraic equations of degree 5 don't have a solution formula.\footnote{TODO: Quelle} Although here seems to be more structure, the resulting algebraic equation can be almost any polynomial of degree 5:\footnote{Thanks to Peter Košinár on \href{http://math.stackexchange.com/a/584814/6876}{math.stackexchange.com} for this one} \begin{align} 0 &\stackrel{!}{=} f'(x) \cdot \left (f(x) - y_p \right ) + (x - x_p)\\ &= \underbrace{3 a^2}_{= \tilde{a}} x^5 + \underbrace{5ab}_{\tilde{b}}x^4 + \underbrace{2(2ac + b^2 )}_{=: \tilde{c}}x^3 &+& \underbrace{3(ad+bc-ay_p)}_{\tilde{d}} x^2 \\ & &+& \underbrace{(2 b d+c^2+1-2 b y_p)}_{=: \tilde{e}}x+\underbrace{c d-c y_p-x_p}_{=: \tilde{f}}\\ 0 &\stackrel{!}{=} \tilde{a}x^5 + \tilde{b}x^4 + \tilde{c}x^3 + \tilde{d}x^2 + \tilde{e}x + \tilde{f} \end{align} \begin{enumerate} \item For any coefficient $\tilde{a} \in \mdr_{> 0}$ of $x^5$ we can choose $a$ such that we get $\tilde{a}$. \item For any coefficient $\tilde{b} \in \mdr \setminus \Set{0}$ of $x^4$ we can choose $b$ such that we get $\tilde{b}$. \item With $c$, we can get any value of $\tilde{c} \in \mdr$. \item With $d$, we can get any value of $\tilde{d} \in \mdr$. \item With $y_p$, we can get any value of $\tilde{e} \in \mdr$. \item With $x_p$, we can get any value of $\tilde{f} \in \mdr$. \end{enumerate} The first restriction guaratees that we have a polynomial of degree 5. The second one is necessary, to get a high range of $\tilde{e}$. This means, that there is no solution formula for the problem of finding the closest points on a cubic function to a given point, because if there was one, you could use this formula for finding roots of polynomials of degree 5. $\qed$ \end{proof} \subsection{Another approach} \todo[inline]{Currently, this is only an idea. It might be usefull to move the cubic function $f$ such that $f$ is point symmetric to the origin. But I'm not sure how to make use of this symmetry.} Just like we moved the function $f$ and the point to get in a nicer situation, we can apply this approach for cubic functions. \begin{figure}[htp] \centering \begin{tikzpicture} \begin{axis}[ legend pos=south east, axis x line=middle, axis y line=middle, grid = major, width=0.8\linewidth, height=8cm, grid style={dashed, gray!30}, xmin=-3, % start the diagram at this x-coordinate xmax= 3, % end the diagram at this x-coordinate ymin=-3, % start the diagram at this y-coordinate ymax= 3, % end the diagram at this y-coordinate axis background/.style={fill=white}, xlabel=$x$, ylabel=$y$, tick align=outside, minor tick num=-3, enlargelimits=true, tension=0.08] \addplot[domain=-3:3, thick,samples=50, red] {x*x*x}; \addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x}; \addplot[domain=-3:3, thick,samples=50, orange] {x*x*x-x}; \addplot[domain=-3:3, thick,samples=50, blue, dotted] {x*x*x+2*x}; \addplot[domain=-3:3, thick,samples=50, lime, dashed] {x*x*x+3*x}; \addlegendentry{$f_1(x)=x^3$} \addlegendentry{$f_2(x)=x^3 + x$} \addlegendentry{$f_1(x)=x^3 - x$} \addlegendentry{$f_2(x)=x^3 + 2 \cdot x$} \addlegendentry{$f_2(x)=x^3 + 3 \cdot x$} \end{axis} \end{tikzpicture} \caption{Cubic functions with $b = d = 0$} \end{figure} First, we move $f_0$ by $\frac{b}{3a}$ to the right, so \[f_1(x) = ax^3 + \frac{b^2 (c-1)}{3a} x + \frac{2b^3}{27 a^2} - \frac{bc}{3a} + d \;\;\;\text{ and }\;\;\;P_1 = (x_P + \frac{b}{3a}, y_P)\] because \begin{align} f_1(x) &= a \left (x - \frac{b}{3a} \right )^3 + b \left (x-\frac{b}{3a} \right )^2 + c \left (x-\frac{b}{3a} \right ) + d\\ &= a \left (x^3 - 3 \frac{b}{3a}x^2 + 3 (\frac{b}{3a})^2 x - \frac{b^3}{27a^3} \right ) +b \left (x^2 - \frac{2b}{3a} x + \frac{b^2}{9a^2} \right ) +c x - \frac{bc}{3a} + d\\ &= ax^3 - bx^2 + \frac{b^2}{3a}x - \frac{b^3}{27 a^2}\\ & \;\;\;\;\;\;+ bx^2 - \frac{2b^2}{3a}x + \frac{b^3}{9a^2}\\ & \;\;\;\;\;\;\;\;\;\;\;\; + c x - \frac{bc}{3a} + d\\ &= ax^3 + \frac{b^2}{3a}\left (1-2+c \right )x + \frac{b^3}{9a^2} \left (1-\frac{1}{3} \right )- \frac{bc}{3a} + d \end{align} \subsection{Number of points with minimal distance} As this leads to a polynomial of degree 5 of which we have to find roots, there cannot be more than 5 solutions. \todo[inline]{Can there be 3, 4 or even 5 solutions? Examples! After looking at function graphs of cubic functions, I'm pretty sure that there cannot be 4 or 5 solutions, no matter how you chose the cubic function $f$ and $P$. I'm also pretty sure that there is no polynomial (no matter what degree) that has more than 3 solutions.} \subsection{Interpolation and approximation} \subsubsection{Quadratic spline interpolation} You could interpolate the cubic function by a quadratic spline. \subsubsection{Bisection method} \todo[inline]{TODO} \subsubsection{Newtons method} One way to find roots of functions is Newtons method. It gives an iterative computation procedure that can converge quadratically if some conditions are met: \begin{theorem}[local quadratic convergence of Newton's method] Let $D \subseteq \mdr^n$ be open and $f: D \rightarrow \mdr^n \in C^2(\mdr)$. Let $x^* \in D$ with $f(x^*) = 0$ and the Jaccobi-Matrix $f'(x^*)$ should not be invertable when evaluated at the root. Then there is a sphere \[K := K_\rho(x^*) = \Set{x \in \mdr^n | \|x- x^*\|_\infty \leq \rho} \subseteq D\] such that $x^*$ is the only root of $f$ in $K$. Furthermore, the elements of the sequence \[ x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}\] are for every starting value $x_0 \in K$ again in $K$ and \[\lim_{n \rightarrow \infty} x_k = x^*\] Also, there is a constant $C > 0$ such that \[\|x^* - x_{n+1} \| = C \|x^* - x_n\|^2 \text{ for } n \in \mathbb{N}_0\|\] \end{theorem} The approach is extraordinary simple. You choose a starting value $x_0$ and compute \[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\] As soon as the values don't change much, you are close to a root. The problem of this approach is choosing a starting value that is close enough to the root. So we have to have a \enquote{good} initial guess. \subsubsection{Quadratic minimization} \todo[inline]{TODO} \clearpage \section{Defined on a closed interval $[a,b] \subseteq \mdr$}