% Author: Marco Miani \documentclass[varwidth=true, border=2pt]{standalone} \usepackage{tikz} \usetikzlibrary{positioning} %% helper macros % The 3D code is based on The drawing is based on Tomas M. Trzeciak's % `Stereographic and cylindrical map projections example`: % http://www.texample.net/tikz/examples/map-projections/ \newcommand\pgfmathsinandcos[3]{% \pgfmathsetmacro#1{sin(#3)}% \pgfmathsetmacro#2{cos(#3)}% } \newcommand\LongitudePlane[3][current plane]{% \pgfmathsinandcos\sinEl\cosEl{#2} % elevation \pgfmathsinandcos\sint\cost{#3} % azimuth \tikzset{#1/.estyle={cm={\cost,\sint*\sinEl,0,\cosEl,(0,0)}}} } \newcommand\LatitudePlane[3][current plane]{% \pgfmathsinandcos\sinEl\cosEl{#2} % elevation \pgfmathsinandcos\sint\cost{#3} % latitude \pgfmathsetmacro\yshift{\cosEl*\sint} \tikzset{#1/.estyle={cm={\cost,0,0,\cost*\sinEl,(0,\yshift)}}} % } \newcommand\DrawLongitudeCircle[2][1]{ \LongitudePlane{\angEl}{#2} \tikzset{current plane/.prefix style={scale=#1}} % angle of "visibility" \pgfmathsetmacro\angVis{atan(sin(#2)*cos(\angEl)/sin(\angEl))} % \draw[current plane,thin,black] (\angVis:1) arc (\angVis:\angVis+180:1); \draw[current plane,thin,dashed] (\angVis-180:1) arc (\angVis-180:\angVis:1); }%this is fake: for drawing the grid \newcommand\DrawLongitudeCirclered[2][1]{ \LongitudePlane{\angEl}{#2} \tikzset{current plane/.prefix style={scale=#1}} % angle of "visibility" \pgfmathsetmacro\angVis{atan(sin(#2)*cos(\angEl)/sin(\angEl))} % \draw[current plane,red,thick] (150:1) arc (150:180:1); }%for drawing the grid \newcommand\DLongredd[2][1]{ \LongitudePlane{\angEl}{#2} \tikzset{current plane/.prefix style={scale=#1}} % angle of "visibility" \pgfmathsetmacro\angVis{atan(sin(#2)*cos(\angEl)/sin(\angEl))} % \draw[current plane,black,dashed, ultra thick] (150:1) arc (150:180:1); } \newcommand\DLatred[2][1]{ \LatitudePlane{\angEl}{#2} \tikzset{current plane/.prefix style={scale=#1}} \pgfmathsetmacro\sinVis{sin(#2)/cos(#2)*sin(\angEl)/cos(\angEl)} % angle of "visibility" \pgfmathsetmacro\angVis{asin(min(1,max(\sinVis,-1)))} \draw[current plane,dashed,black,ultra thick] (-50:1) arc (-50:-35:1); } \newcommand\fillred[2][1]{ \LongitudePlane{\angEl}{#2} \tikzset{current plane/.prefix style={scale=#1}} % angle of "visibility" \pgfmathsetmacro\angVis{atan(sin(#2)*cos(\angEl)/sin(\angEl))} % \draw[current plane,red,thin] (\angVis:1) arc (\angVis:\angVis+180:1); } \newcommand\DrawLatitudeCircle[2][1]{ \LatitudePlane{\angEl}{#2} \tikzset{current plane/.prefix style={scale=#1}} \pgfmathsetmacro\sinVis{sin(#2)/cos(#2)*sin(\angEl)/cos(\angEl)} % angle of "visibility" \pgfmathsetmacro\angVis{asin(min(1,max(\sinVis,-1)))} \draw[current plane,thin,black] (\angVis:1) arc (\angVis:-\angVis-180:1); \draw[current plane,thin,dashed] (180-\angVis:1) arc (180-\angVis:\angVis:1); }%Defining functions to draw limited latitude circles (for the red mesh) \newcommand\DrawLatitudeCirclered[2][1]{ \LatitudePlane{\angEl}{#2} \tikzset{current plane/.prefix style={scale=#1}} \pgfmathsetmacro\sinVis{sin(#2)/cos(#2)*sin(\angEl)/cos(\angEl)} % angle of "visibility" \pgfmathsetmacro\angVis{asin(min(1,max(\sinVis,-1)))} %\draw[current plane,red,thick] (-\angVis-50:1) arc (-\angVis-50:-\angVis-20:1); \draw[current plane,red,thick] (-50:1) arc (-50:-35:1); } \tikzset{% >=latex, inner sep=0pt,% outer sep=2pt,% mark coordinate/.style={inner sep=0pt,outer sep=0pt,minimum size=3pt, fill=black,circle}% } \usepackage{amsmath} \usetikzlibrary{arrows} \pagestyle{empty} \usepackage{pgfplots} \usetikzlibrary{calc,fadings,decorations.pathreplacing} \begin{document} \begin{tikzpicture}[scale=1,every node/.style={minimum size=1cm}] %% some definitions \def\R{4} % sphere radius \def\angEl{25} % elevation angle \def\angAz{-100} % azimuth angle \def\angPhiOne{-50} % longitude of point P \def\angPhiTwo{-35} % longitude of point Q \def\angBeta{30} % latitude of point P and Q %% working planes \pgfmathsetmacro\H{\R*cos(\angEl)} % distance to north pole \LongitudePlane[xzplane]{\angEl}{\angAz} \LongitudePlane[pzplane]{\angEl}{\angPhiOne} \LongitudePlane[qzplane]{\angEl}{\angPhiTwo} \LatitudePlane[equator]{\angEl}{0} \fill[ball color=white!10] (0,0) circle (\R); % 3D lighting effect \coordinate (O) at (0,0); \coordinate[mark coordinate] (N) at (0,\H); \coordinate[mark coordinate] (S) at (0,-\H); \path[xzplane] (\R,0) coordinate (XE); %defining points outsided the area bounded by the sphere \path[qzplane] (\angBeta:\R+5.2376) coordinate (XEd); \path[pzplane] (\angBeta:\R) coordinate (P);%fino alla sfera \path[pzplane] (\angBeta:\R+5.2376) coordinate (Pd);%sfora di una quantità pari a 10 dopo la sfera \path[pzplane] (\angBeta:\R+5.2376) coordinate (Td);%sfora di una quantità pari a 10 dopo la sfera \path[pzplane] (\R,0) coordinate (PE); \path[pzplane] (\R+4,0) coordinate (PEd); \path[qzplane] (\angBeta:\R) coordinate (Q); \path[qzplane] (\angBeta:\R) coordinate (Qd);%sfora di una quantità pari a 10 dopo la sfera \path[qzplane] (\R,0) coordinate (QE); \path[qzplane] (\R+4,0) coordinate (QEd);%sfora di una quantità 10 dalla sfera sul piano equat. \DrawLongitudeCircle[\R]{\angPhiOne} % pzplane \DrawLongitudeCircle[\R]{\angPhiTwo} % qzplane \DrawLatitudeCircle[\R]{\angBeta} \DrawLatitudeCircle[\R]{0} % equator %labelling north and south \node[above=8pt] at (N) {$\mathbf{N}$}; \node[below=8pt] at (S) {$\mathbf{S}$}; \draw[-,dashed, thick] (N) -- (S); \draw[->] (O) -- (P); \draw[dashed] (XE) -- (O) -- (PE); \draw[dashed] (O) -- (QE); \draw[pzplane,->,thin] (0:0.5*\R) to[bend right=15] node[midway,right] {$v$} (\angBeta:0.5*\R); \path[pzplane] (0.5*\angBeta:\R) node[right] {$$}; \path[qzplane] (0.5*\angBeta:\R) node[right] {$$}; \draw[equator,->,thin] (\angAz:0.5*\R) to[bend right=30] node[pos=0.4,above] {$u$} (\angPhiOne:0.5*\R); \end{tikzpicture} \end{document}