\subsection{What will I do next?} \begin{frame}{What will I do next?} \begin{itemize} \item Get classification performance with cross-validation \item Implement neural net for classification \begin{itemize} \item preprocessing: compute cubic spline for each line \begin{itemize} \item equi-spaced points or \item get equi-timed points \end{itemize} \item 5 - 20 input neurons for each line \item 1076 output neurons (one for each symbol) \end{itemize} \item Get a language model (e.g. by parsing Wikipedia) \item Use ANN with HMM (?) \end{itemize} \end{frame} \subsection{Far future} \begin{frame}{What could be done?} \begin{itemize} \item Make use of audio data in a multimodal approach\\ e.g. $R$ and $\mathcal{R}$ \item Currently, the Lecture Translation system doesn't recognize math.\\ You get \enquote{integral of e raised to the power of x d x} instead of $\int e^x \mathrm{d} x$. \item Spoken math is ambigous: $\sqrt{a+b}$ vs. $\sqrt{a} + b$ \item The language model I create could help to find probable formulas \item The platform could be used to get more input data of users \end{itemize} \end{frame}