Teilaufgabe a)

$$L = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 4 & 2 & 3 \end{pmatrix}$$

Teilaufgabe b)

Gesucht: det(A)

Sei $P \cdot L = L \cdot R$, die gewohnte LR-Zerlegung.

Dann gilt:

$$\det(A) = \det(L) \cdot \det(R) / \det(P)$$

 $\det(L) = 1$, da alle Diagonalelemente 1 sind und es sich um eine untere Dreiecksmatrix handelt.

 $det(R) = r_{11} \cdot \ldots \cdot r_{nn}$ da es sich um eine obere Dreiecksmatrix handelt.

$$det(P) = 1 oder -1$$

Das Verfahren ist also:

- 1. Berechne Restmatrix R mit dem Gaußverfahren.
- 2. Multipliziere die Diagonalelemente von R
- 3. falls die Anzahl an Zeilenvertauschungen ungerade ist negiere das Produkt aus 2 (eine Zeilenvertauschung verändert lediglich das Vorzeichen und P ist durch Zeilenvertauschungen aus der Einheitsmatrix hervorgegangen)

Teilaufgabe a)

Behauptung: Für $x \in \mathbb{R}$ gilt, dass $cos(x_k) = x_{k+1}$ gegen den einzigen Fixpunkt $x^* = cos(x^*)$ konvergiert.

Beweis: Sei D := [-1, 1]. Trivial: D ist abgeschlossen.

Sei $x \in D$, so gilt:

$$0 < cos(x) \le 1$$

Also: $cos(x) \in D$.

Wenn $x \notin D$, so gilt y := cos(x) und $cos(y) \in D$. D.h. bereits nach einem Iterationschritt wäre $cos(x) \in D$ für $x \in \mathbb{R}!$ Dies ist wichtig, da damit gezeigt ist, dass $cos(x_k) = x_{k+1}$ für jedes $x \in \mathbb{R}$ konvergiert! Es kommt nur dieser einzige Iteratationsschritt für $x \notin \mathbb{R}$ hinzu.

Nun gilt mit $x, y \in D, x < y, \xi \in (x, y)$ und dem Mittelwert der Differentialrechnung:

$$\frac{\cos(x) - \cos(y)}{x - y} = \cos'(\xi)$$

$$\Leftrightarrow \cos(x) - \cos(y) = \cos'(\xi) * (x - y)$$

$$\Leftrightarrow |\cos(x) - \cos(y)| = |\cos'(\xi) * (x - y)| \le |\cos'(\xi)| * |(x - y)|$$

Da $\xi \in (0,1)$ gilt:

$$0 \le |\cos'(\xi)| = |\sin(\xi)| < 1$$

Damit ist gezeigt, dass $cos(x): D \to D$ Kontraktion auf D.

Damit sind alle Voraussetzung des Banachschen Fixpunktsatzes erfüllt.

Nach dem Banachschen Fixpunktsatz folgt die Aussage.

Teilaufgabe a)

$$L_0(x) = -\frac{1}{6} \cdot (x^3 - 3x^2 + 2x) \tag{1}$$

$$L_1(x) = \frac{1}{2} \cdot (x^3 - 2x^2 - x + 2) \tag{2}$$

$$L_2(x) = -\frac{1}{2} \cdot (x^3 - x^2 - 2x) \tag{3}$$

$$L_3(x) = \frac{1}{6} \cdot (x^3 - x) \tag{4}$$

Damit ergibt sich:

$$p(x) = x^3 + 2x^2 - 5x + 1 (5)$$

Anmerkung: Es ist in der Klausur allerdings nicht notwendig die Monomdarstellung zu berechnen außer es wird explizit verlangt. (Das spart viel Zeit)

Teilaufgabe b)

Zunächst die dividierten Differenzen berechnen:

$$f[x_0] = 7,$$
 $f[x_1] = 1,$ $f[x_2] = -1,$ $f[x_3] = 7$ (6)
 $f[x_0, x_1] = -6,$ $f[x_1, x_2] = -2,$ $f[x_2, x_3] = 8$ (7)
 $f[x_0, x_1, x_2] = 2,$ $f[x_1, x_2, x_3] = 5$ (8)

$$f[x_0, x_1] = -6,$$
 $f[x_1, x_2] = -2,$ $f[x_2, x_3] = 8$ (7)

$$f[x_0, x_1, x_2] = 2,$$
 $f[x_1, x_2, x_3] = 5$ (8)

$$f[x_0, x_1, x_2, x_3] = 1 (9)$$

Insgesamt ergibt sich also

$$p(x) = 7 - (x+1) \cdot 6 + (x+1) \cdot x \cdot 2 + (x+1) \cdot x \cdot (x-1)$$
(10)

Teilaufgabe a)

- 1. Ordnung 3 kann durch geschickte Gewichtswahl erzwungen werden.
- 2. Ordnung 4 ist automatisch gegeben, da die QF symmetrisch sein soll.
- 3. Aufgrund der Symmetrie gilt Äquivalenz zwischen Ordnung 5 und 6. Denn eine hätte die QF Ordnung 5, so wäre wegen der Symmetrie Ordnung 6 direkt gegeben. Ordnung 6 wäre aber bei der Quadraturformel mit 3 Knoten das Maximum, was nur mit der Gauß-QF erreicht werden kann. Da aber $c_1 = 0$ gilt, kann es sich hier nicht um die Gauß-QF handeln. Wegen erwähnter Äquivalenz kann die QF auch nicht Ordnung 5 haben.

Da $c_1 = 0$ gilt, muss $c_3 = 1$ sein (Symmetrie). Und dann muss $c_2 = \frac{1}{2}$ sein. Es müssen nun die Gewichte bestimmt werden um Ordnung 3 zu garantieren mit:

$$b_i = \int_0^1 L_i(x) \mathrm{d}x \tag{11}$$

$$b_1 = \frac{1}{6},\tag{12}$$

$$b_2 = \frac{4}{6},$$

$$b_3 = \frac{1}{6}$$
(13)

$$b_3 = \frac{1}{6} \tag{14}$$

Teilaufgabe b)

Als erstes ist festzustellen, dass es sich hier um die Simpsonregel handelt und die QF

$$\int_{a}^{b} f(x)dx = (b-a) \cdot \frac{1}{6} \cdot \left(f(a) + 4 \cdot f(\frac{a+b}{2}) + f(b) \right)$$
 (15)

ist. Wenn diese nun auf N Intervalle aufgepflittet wird gilt folgendes:

$$h = \frac{(b-a)}{N} \tag{16}$$

$$\int_{a}^{b} f(x) dx = h \cdot \frac{1}{6} \cdot \left[f(a) + f(b) + 2 \cdot \sum_{i=1}^{N-1} f(a+i \cdot h) + 4 \cdot \sum_{l=0}^{N-1} f(a+\frac{1}{2} \cdot h + l \cdot h) \right]$$
(17)

 $\sum_{i=1}^{N-1} f(a+i\cdot h)$ steht für die Grenzknoten (deshalb werden sie doppelt gezählt). Von den Grenzknoten gibt es insgesamt N-2 Stück, da die tatsächlichen Integralgrenzen a und b nur einmal in die Berechnung mit einfließen.

 $\sum_{l=0}^{N-1} f(a+\frac{1}{2}\cdot h+l\cdot h)$ sind die jeweiligen mittleren Knoten der Intervalle. Davon gibt es N Stück.

Teilaufgabe c)

TODO

Zunächst ist nach der Familie von Quadraturformeln gefragt, für die gilt: (p := Ordnung der QF)

$$s = 3 \tag{18}$$

$$0 = c_1 < c_2 < c_3 \tag{19}$$

$$p \ge 4 \tag{20}$$

Nach Satz 29 sind in der Familie genau die QFs, für die gilt: Für alle Polynome g(x) mit Grad ≤ 0 gilt:

$$\int_0^1 M(x) \cdot g(x) dx = 0 \tag{21}$$

Es gilt g(x) = c für eine Konstante c
, da der Grad von g(x)0 ist. Also ist 21 gleichbedeutend mit:

$$\int_0^1 M(x) \cdot c \mathrm{d}x = 0 \tag{22}$$

$$\Leftrightarrow c \cdot \int_0^1 M(x) \mathrm{d}x = 0 \tag{23}$$

$$\Leftrightarrow \int_0^1 M(x) \mathrm{d}x = 0 \tag{24}$$

$$\Leftrightarrow \int_0^1 (x - c_1)(x - c_2)(x - c_3) dx = 0$$
 (25)

$$\Leftrightarrow \frac{1}{4} - \frac{1}{3} \cdot (c_2 + c_3) + \frac{1}{2} \cdot c_2 \cdot c_3 = 0 \tag{26}$$

$$\Leftrightarrow \frac{\frac{1}{4} - \frac{1}{3} \cdot c_3}{\frac{1}{3} - \frac{1}{2} \cdot c_3} = c_2 \tag{27}$$

Natürlich müssen auch die Gewichte optimal gewählt werden. Dafür wird Satz 28 genutzt:

Sei
$$b^T = (b_1, b_2, b_3)$$
 der Gewichtsvektor. Sei zudem $C := \begin{pmatrix} c_1^0 & c_2^0 & c_3^0 \\ c_1^1 & c_2^1 & c_3^1 \\ c_1^2 & c_2^2 & c_3^2 \end{pmatrix}$.

Dann gilt: C ist invertierbar und $b = C^{-1} \cdot \begin{pmatrix} 1 \\ \frac{1}{2} \\ \frac{1}{3} \end{pmatrix}$.

Es gibt genau eine symmetrische QF in der Familie. Begründung:

Aus $c_1 = 0$ folgt, dass $c_3 = 0$ ist. Außerdem muss $c_2 = \frac{1}{2}$ sein. Also sind die Knoten festgelegt. Da wir die Ordnung $\geq s = 3$ fordern, sind auch die Gewichte eindeutig. Es handelt sich um die aus der Vorlesung bekannte Simpsonregel.