%!TEX root = Programmierparadigmen.tex \markboth{Symbolverzeichnis}{Symbolverzeichnis} \chapter*{Symbolverzeichnis} \addcontentsline{toc}{chapter}{Symbolverzeichnis} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Reguläre Ausdrücke % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section*{Reguläre Ausdrücke} % Set \mylengtha to widest element in first column; adjust % \mylengthb so that the width of the table is \columnwidth \settowidth\mylengtha{$\alpha^+ = L(\alpha)^+$} \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax} \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}} $\emptyset$ & Leere Menge\\ $\epsilon$ & Das leere Wort\\ $\alpha, \beta$ & Reguläre Ausdrücke\\ $L(\alpha)$ & Die durch $\alpha$ beschriebene Sprache\\ $L(\alpha | \beta)$& $L(\alpha) \cup L(\beta)$\\ $L^0$ & Die leere Sprache, also $\Set{\varepsilon}$\\ $L^{n+1}$ & Potenz einer Sprache. Diese ist definiert als\newline $L^n \circ L \text{ für } n \in \mdn_0$\\ $\alpha^+ = L(\alpha)^+$ & $\bigcup_{i \in \mdn} L(\alpha)^i$\\ $\alpha^* = L(\alpha)^*$ & $\bigcup_{i \in \mdn_0} L(\alpha)^i$\\ \end{xtabular} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Logik % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section*{Logik} \settowidth\mylengtha{$\mathcal{M} \models \varphi$} \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax} \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}} $\mathcal{M} \models \varphi$& Semantische Herleitbarkeit\newline Im Modell $\mathcal{M}$ gilt das Prädikat $\varphi$.\\ $\psi \vdash \varphi$ & Syntaktische Herleitbarkeit\newline Die Formel $\varphi$ kann aus der Menge der Formeln $\psi$ hergeleitet werden.\\ \end{xtabular} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Typinferenz % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section*{Typinferenz} \settowidth\mylengtha{$\tau \succeq \tau'$} \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax} \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}} $\Gamma \vdash t: \tau$ & Im Typkontext $\Gamma$ hat der Term $t$ den Typ $\tau$\\ $a \Parr b$ & $a$ wird zu $b$ unifiziert\\ $\tau \succeq \tau'$& $\tau$ wird durch $\tau'$ instanziiert\\\ \end{xtabular} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Weiteres % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section*{Weiteres} \settowidth\mylengtha{$\tau \succeq \tau'$} \setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax} \begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}} $\bot$ & Bottom\\ $a \Parr b$ & $a$ wird zu $b$ unifiziert\\ $\tau \succeq \tau'$& $\tau$ wird durch $\tau'$ instanziiert\\\ \end{xtabular}