\documentclass[a4paper]{scrartcl} \usepackage[english]{babel} \usepackage[utf8]{inputenc} \usepackage{amssymb,amsmath} \newtheorem{theorem}{Theorem} \newenvironment{proof}{\paragraph{Proof:}}{\hfill$\square$} \newcommand{\Prob}{\mathbb{P}} \begin{document} \begin{theorem} Let $Y \sim \mathcal{N}(\mu, \sigma^2)$ and $X \sim e^Y$. Then X has the density \[f_X(x) = \begin{cases} \frac{1}{x \sigma \sqrt{2 \pi}}\exp{- \frac{(\log x - \mu)^2}{2 \sigma^2}} &\text{if } x > 0\\ 0 & \text{otherwise}\end{cases}\] \end{theorem} \begin{proof} \begin{align} \Prob(X \leq t) &= \Prob(e^Y \leq t)\\ &= \begin{cases}\Prob(Y \leq \log(t)) &\text{if } x > 0\\ 0 &\text{otherwise} \end{cases} \end{align} Obviously, the density $f_X(x) = 0$ for $x \leq 0$. Now continue with $t > 0$: \begin{align} \Prob(X \leq t) &= \Prob(Y \leq \log(t))\\ &= \Phi_{\mu, \sigma^2}(\log(t))\\ &= \Phi_{0, 1} \left (\frac{\log(t) - \mu}{\sigma} \right)\\ f_X(x) &= \frac{\partial}{\partial x} \Phi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\ &= \left (\frac{\partial}{\partial x} \left (\frac{\log(x) - \mu}{\sigma} \right) \right) \cdot \varphi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\ &= \left (\frac{\sigma \cdot \frac{1}{x}}{\sigma^2} \right) \cdot \varphi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\ &= \frac{1}{x \sigma} \cdot \varphi_{0, 1} \left (\frac{\log(x) - \mu}{\sigma} \right)\\ &= \frac{1}{x \sigma} \cdot \frac{1}{\sqrt{2\pi}} \exp \left (-\frac{1}{2} \cdot {\left(\frac{\log(x) - \mu}{\sigma} \right )}^2 \right ) \end{align} \end{proof} \end{document}