\chapter{Linear function} \section{Defined on $\mdr$} Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and $t \in \mdr$ be a linear function. \begin{figure}[htp] \centering \begin{tikzpicture} \begin{axis}[ legend pos=north east, axis x line=middle, axis y line=middle, grid = major, width=0.8\linewidth, height=8cm, grid style={dashed, gray!30}, xmin= 0, % start the diagram at this x-coordinate xmax= 5, % end the diagram at this x-coordinate ymin= 0, % start the diagram at this y-coordinate ymax= 3, % end the diagram at this y-coordinate axis background/.style={fill=white}, xlabel=$x$, ylabel=$y$, tick align=outside, minor tick num=-3, enlargelimits=true, tension=0.08] \addplot[domain=-5:5, thick,samples=50, red] {0.5*x}; \addplot[domain=-5:5, thick,samples=50, blue] {-2*x+6}; \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)}; \addlegendentry{$f(x)=\frac{1}{2}x$} \addlegendentry{$g(x)=-2x+6$} \end{axis} \end{tikzpicture} \caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular} \label{fig:linear-min-distance} \end{figure} Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The slope of $f_\bot$ is $- \frac{1}{m}$ and $t_\bot$ can be calculated:\nobreak \begin{align} f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\ \Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\ \Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P \end{align} The point $(x, f(x))$ where the perpendicular $f_\bot$ crosses $f$ is calculated this way: \begin{align} f(x) &= f_\bot(x)\\ \Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\ \Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\ \Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right ) \end{align} There is only one point with minimal distance. See Figure~\ref{fig:linear-min-distance}. \section{Defined on a closed interval of $\mdr$}