\chapter{Quadratic functions} \section{Defined on $\mdr$} Let $f:\mdr \rightarrow \mdr, f(x) = a \cdot x^2 + b \cdot x + c$ with $a \in \mdr \setminus \Set{0}$ and $b, c \in \mdr$ be a quadratic function. \begin{figure}[htp] \centering \begin{tikzpicture} \begin{axis}[ legend pos=north west, axis x line=middle, axis y line=middle, grid = major, width=0.8\linewidth, height=8cm, grid style={dashed, gray!30}, xmin=-3, % start the diagram at this x-coordinate xmax= 3, % end the diagram at this x-coordinate ymin=-0.25, % start the diagram at this y-coordinate ymax= 9, % end the diagram at this y-coordinate axis background/.style={fill=white}, xlabel=$x$, ylabel=$y$, tick align=outside, minor tick num=-3, enlargelimits=true, tension=0.08] \addplot[domain=-3:3, thick,samples=50, red] {0.5*x*x}; \addplot[domain=-3:3, thick,samples=50, green] { x*x}; \addplot[domain=-3:3, thick,samples=50, blue] { x*x + x}; \addplot[domain=-3:3, thick,samples=50, orange,dotted] { x*x + 2*x}; \addplot[domain=-3:3, thick,samples=50, black,dashed] {-x*x + 6}; \addlegendentry{$f_1(x)=\frac{1}{2}x^2$} \addlegendentry{$f_2(x)=x^2$} \addlegendentry{$f_3(x)=x^2+x$} \addlegendentry{$f_4(x)=x^2+2x$} \addlegendentry{$f_5(x)=-x^2+6$} \end{axis} \end{tikzpicture} \caption{Quadratic functions} \end{figure} \subsection{Calculate points with minimal distance} In this case, $d_{P,f}^2$ is polynomial of degree $n^2 = 4$. We use Theorem~\ref{thm:fermats-theorem}:\nobreak \begin{align} 0 &\overset{!}{=} (d_{P,f}^2)'\\ &= 2x -2 x_p -2y_p f'(x) + \left (f(x)^2 \right )'\\ &= 2x -2 x_p -2y_p f'(x) + 2 f(x) \cdot f'(x) \rlap{\hspace*{3em}(chain rule)}\label{eq:minimizingFirstDerivative}\\ \Leftrightarrow 0 &\overset{!}{=} x -x_p -y_p f'(x) + f(x) \cdot f'(x) \rlap{\hspace*{3em}(divide by 2)}\label{eq:minimizingFirstDerivative}\\ &= x -x_p -y_p (2ax+b) + (ax^2+bx+c)(2ax+b)\\ &= x -x_p -y_p \cdot 2ax- y_p b + (2 a^2 x^3+2 a b x^2+2 a c x+ab x^2+b^2 x+bc)\\ &= x -x_p -2y_p ax- y_p b + (2a^2 x^3 + 3 ab x^2 + 2acx + b^2 x + bc)\\ &= 2a^2 x^3 + 3 ab x^2 + (1 -2y_p a+ 2ac + b^2)x +(bc-by_p-x_p)\label{eq:quadratic-derivative-eq-0} \end{align} This is an algebraic equation of degree 3. There can be up to 3 solutions in such an equation. Those solutions can be found with a closed formula. But not every solution of the equation given by Theorem~\ref{thm:fermats-theorem} has to be a solution to the given problem as you can see in Example~\ref{ex:false-positive}. \goodbreak \begin{example}\label{ex:false-positive} Let $a = 1, b = 0, c=-1, x_p= 0, y_p = 1$. So $f(x) = x^2 - 1$ and $P(0, 1)$. \begin{align} \xRightarrow{\text{Equation}~\ref{eq:quadratic-derivative-eq-0}} 0 &\stackrel{!}{=} 2x^3 - 3x\\ &= x(2x^2-3)\\ \Rightarrow x_{1,2} &= \pm \sqrt{\frac{3}{2}} \text{ and } x_3 = 0\\ d_{P,f}(x_3) &= \sqrt{0^2 + (-1-1)^2} = 2\\ d_{P,f} \left (\pm \sqrt{\frac{3}{2}} \right ) &= \sqrt{\left (\sqrt{\frac{3}{2} - 0} \right )^2 + \left (\frac{1}{2}-1 \right )^2}\\ &= \sqrt{\nicefrac{3}{2}+\nicefrac{1}{4}} \\ &= \sqrt{\nicefrac{7}{4}}\\ \end{align} This means $x_3$ is not a point of minimal distance, although $(d_{P,f}(x_3))' = 0$. \end{example} \subsection{Number of points with minimal distance} \begin{theorem} A point $P$ has either one or two points on the graph of a quadratic function $f$ that are closest to $P$. \end{theorem} \begin{proof} The number of closests points of $f$ cannot be bigger than 3, because Equation~\ref{eq:quadratic-derivative-eq-0} is a polynomial function of degree 3. Such a function can have at most 3 roots. As $f$ has at least one point on its graph, there is at least one point with minimal distance. In the following, I will do some transformations with $f = f_0$ and $P = P_0$. This will make it easier to calculate the minimal distance points. Moving $f_0$ and $P_0$ simultaneously in $x$ or $y$ direction does not change the minimum distance. Furthermore, we can find the points with minimum distance on the moved situation and calculate the minimum points in the original situation. First of all, we move $f_0$ and $P_0$ by $\frac{b}{2a}$ in $x$ direction, so \[f_1(x) = ax^2 - \frac{b^2}{4a} + c \;\;\;\text{ and }\;\;\; P_1 = \left (x_p+\frac{b}{2a},\;\; y_p \right )\] Because:\footnote{The idea why you subtract $\frac{b}{2a}$ within $f$ is that when you subtract something from $x$ before applying $f$ it takes more time ($x$ needs to be bigger) to get to the same situation. In consequence, if we want to move the whole graph by 1 to the left, we have to add $+1$.} \begin{align} f(x-\nicefrac{b}{2a}) &= a (x-\nicefrac{b}{2a})^2 + b (x-\nicefrac{b}{2a}) + c\\ &= a (x^2 - \nicefrac{b}{a} x + \nicefrac{b^2}{4a^2}) + bx - \nicefrac{b^2}{2a} + c\\ &= ax^2 - bx + \nicefrac{b^2}{4a} + bx - \nicefrac{b^2}{2a} + c\\ &= ax^2 -\nicefrac{b^2}{4a} + c \end{align} Then move $f_1$ and $P_1$ by $\frac{b^2}{4a}-c$ in $y$ direction. You get: \[f_2(x) = ax^2\;\;\;\text{ and }\;\;\; P_2 = \Big (\underbrace{x_P+\frac{b}{2a}}_{=: z},\;\; \underbrace{y_P+\frac{b^2}{4a}-c}_{=: w} \Big )\] As $f_2(x) = ax^2$ is symmetric to the $y$ axis, only points $P = (0, w)$ could possilby have three minima. Then compute: \begin{align} d_{P,{f_2}}(x) &= \sqrt{(x-0)^2 + (f_2(x)-w)^2}\\ &= \sqrt{x^2 + (ax^2-w)^2}\\ &= \sqrt{x^2 + a^2 x^4-2aw x^2+w^2}\\ &= \sqrt{a^2 x^4 + (1-2aw) x^2 + w^2}\\ &= \sqrt{\left (a x^2 + \frac{1-2 a w}{2a} \right )^2 + w^2 - \left (\frac{1-2 a w}{2a} \right )^2}\\ &= \sqrt{\left (a x^2 + \nicefrac{1}{2a}- w \right )^2 + \left (w^2 - \left (\frac{1-2 a w}{2a} \right )^2 \right)} \end{align} This means, the term \[a^2 x^2 + (\nicefrac{1}{2a}- w)\] has to get as close to $0$ as possilbe when we want to minimize $d_{P,{f_2}}$. For $w \leq \nicefrac{1}{2a}$ you only have $x = 0$ as a minimum. For all other points $P = (0, w)$, there are exactly two minima $x_{1,2} = \pm \sqrt{\frac{\frac{1}{2a} - w}{a}}$. $\qed$ \end{proof} \subsection{Solution formula} We start with the graph that was moved so that $f_2 = ax^2$. \textbf{Case 1:} $P$ is on the symmetry axis, hence $x_P = - \frac{b}{2a}$. In this case, we have already found the solution. If $w = y_P + \frac{b^2}{4a} - c > \frac{1}{2a}$, then there are two solutions: \[x_{1,2} = \pm \sqrt{\frac{\frac{1}{2a} - w}{a}}\] Otherwise, there is only one solution $x_1 = 0$. \textbf{Case 2:} $P = (z, w)$ is not on the symmetry axis, so $z \neq 0$. Then you compute: \begin{align} d_{P,{f_2}}(x) &= \sqrt{(x-z)^2 + (f_2(x)-w)^2}\\ &= \sqrt{(x^2 - 2zx + z^2) + ((ax^2)^2 - 2 awx^2 + w^2)}\\ &= \sqrt{a^2x^4 + (1- 2 aw)x^2 +(- 2z)x + z^2 + w^2}\\ 0 &\stackrel{!}{=} \Big(\big(d_{P, {f_2}}(x)\big)^2\Big)' \\ &= 4a^2x^3 + 2(1- 2 aw)x +(- 2z)\\ &= 2 \left (2a^2x^3 + (1- 2 aw)x \right ) - 2z\\ \Leftrightarrow 0 &\stackrel{!}{=} 2a^2x^3 + (1- 2 aw) x - z\\ \stackrel{a \neq 0}{\Leftrightarrow} 0 &\stackrel{!}{=} x^3 + \underbrace{\frac{1- 2 aw}{2 a^2}}_{=: \alpha} x + \underbrace{\frac{-z}{2 a^2}}_{=: \beta}\\ &= x^3 + \alpha x + \beta\label{eq:simple-cubic-equation-for-quadratic-distance} \end{align} Let $t$ be defined as \[t := \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\] \subsubsection{Analyzing $t$} \input{analyzing-t.tex} \subsubsection{Solutions of $x^3 + \alpha x + \beta$} I will make use of the following identities: \begin{align*} (1-i \sqrt{3})^2 &= -2 (1+i \sqrt{3})\\ (1+i \sqrt{3})^2 &= -2 (1-i \sqrt{3})\\ (1 \pm i \sqrt{3})^3 &= -8\\ (a-b)^3 &= a^3-3 a^2 b+3 a b^2-b^3 \end{align*} \textbf{Case 2.1:} \input{quadratic-case-2.1} \goodbreak \textbf{Case 2.2:} \input{quadratic-case-2.2} \textbf{Case 2.3:} \input{quadratic-case-2.3} \goodbreak So the solution is given by \todo[inline]{NO! Currently, there are erros in the solution. Check $f(x) = x^2$ and $P=(-2,4)$. Solution should be $x_1 = -2$, but it isn't!} \begin{align*} x_S &:= - \frac{b}{2a} \;\;\;\;\; \text{(the symmetry axis)}\\ w &:= y_P+\frac{b^2}{4a}-c \;\;\; \text{ and } \;\;\; z := x_P+\frac{b}{2a}\\ \alpha &:= \frac{1- 2 aw}{2 a^2} \;\;\;\text{ and }\;\;\; \beta := \frac{-z}{2 a^2}\\ t &:= \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\\ \underset{x\in\mdr}{\arg \min d_{P,f}(x)} &= \begin{cases} x_1 = +\sqrt{a (y_p + \frac{b^2}{4a} - c) - \frac{1}{2}} + x_S \text{ and } &\text{if } x_P = x_S \text{ and } y_p + \frac{b^2}{4a} - c > \frac{1}{2a} \\ x_2 = -\sqrt{a (y_p + \frac{b^2}{4a} - c) - \frac{1}{2}} + x_S\\ x_1 = x_S &\text{if } x_P = x_S \text{ and } y_p + \frac{b^2}{4a} - c \leq \frac{1}{2a} \\ x_1 = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} &\text{if } x_P \neq x_S \end{cases} \end{align*} \clearpage \section{Defined on a closed interval $[a,b] \subseteq \mdr$} Now the problem isn't as simple as with constant and linear functions. If one of the minima in $S_2(P,f)$ is in $[a,b]$, this will be the shortest distance as there are no shorter distances. \todo[inline]{ The following IS WRONG! Can I include it to help the reader understand the problem?} If the function (defined on $\mdr$) has only one shortest distance point $x$ for the given $P$, it's also easy: The point in $[a,b]$ that is closest to $x$ will have the sortest distance. \[\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} = \begin{cases} S_2(f, P) \cap [a,b] &\text{if } S_2(f, P) \cap [a,b] \neq \emptyset \\ \Set{a} &\text{if } |S_2(f, P)| = 1 \text{ and } S_2(f, P) \ni x < a\\ \Set{b} &\text{if } |S_2(f, P)| = 1 \text{ and } S_2(f, P) \ni x > b\\ todo &\text{if } |S_2(f, P)| = 2 \text{ and } S_2(f, P) \cap [a,b] = \emptyset \end{cases}\]