\chapter{Linear function} \section{Defined on $\mdr$} \begin{theorem}[Solution formula for linear functions on $\mdr$] Let $f: \mdr \rightarrow \mdr $ be a linear function $f(x) := m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and $t \in \mdr$ be a linear function. Then there is only one point $(x, f(x))$ on the graph of $f$ with minimal distance to $P = (x_P, y_P)$. This point is given by \[x = \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\] \end{theorem} \begin{figure}[htp] \centering \begin{tikzpicture} \begin{axis}[ legend pos=north east, legend cell align=left, axis x line=middle, axis y line=middle, grid = major, width=0.8\linewidth, height=8cm, grid style={dashed, gray!30}, xmin= 0, % start the diagram at this x-coordinate xmax= 5, % end the diagram at this x-coordinate ymin= 0, % start the diagram at this y-coordinate ymax= 3, % end the diagram at this y-coordinate axis background/.style={fill=white}, xlabel=$x$, ylabel=$y$, tick align=outside, minor tick num=-3, enlargelimits=true, tension=0.08] \addplot[domain=-5:5, thick,samples=50, red] {0.5*x}; \addplot[domain=-5:5, thick,samples=50, blue, dashed] {-2*x+6}; \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)}; \newcommand{\R}{0.9} \addplot [domain=0:2*pi,samples=50, dotted]({\R*cos(deg(x))+2},{\R*sin(deg(x))+2}); \addplot[blue, nodes near coords=$f_\bot$,every node near coord/.style={anchor=225}] coordinates {(1.5, 3)}; \addplot[red, nodes near coords=$f$,every node near coord/.style={anchor=225}] coordinates {(0.9, 0.5)}; \addlegendentry{$f(x)=\frac{1}{2}x$} \addlegendentry{$f_\bot(x)=-2x+6$} \end{axis} \end{tikzpicture} \caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular} \label{fig:linear-min-distance} \end{figure} \begin{proof} With Theorem~\ref{thm:fermats-theorem} you get: \begin{align} 0 &\stackrel{!}{=} (d_{P,f}(x)^2)'\\ &= 2(x-x_P) + 2 (f(x) - y_P)f'(x)\\ \Leftrightarrow 0 &\stackrel{!}{=} x - x_P + (f(x) - y_P) f'(x)\\ &= x- x_P + (mx+t - y_P)\cdot m\\ &= x (m+1) + m(t-y_P) - x_P\\ \Leftrightarrow x &\stackrel{!}{=} \frac{x_p - m(t-y_p)}{m^2+1}\\ &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\label{eq:solution-linear-r} \end{align} It is obvious that a minium has to exist, the $x$ from Equation~\ref{eq:solution-linear-r} has to be this minimum. $\qed$ \end{proof} \clearpage \section{Defined on a closed interval $[a,b] \subseteq \mdr$} Let $f:[a,b] \rightarrow \mdr$, $f(x) := m\cdot x + t$ with $a,b,m,t \in \mdr$ and $a \leq b$, $m \neq 0$ be a linear function. \begin{figure}[htp] \centering \begin{tikzpicture} \begin{axis}[ legend pos=north east, legend cell align=left, axis x line=middle, axis y line=middle, grid = major, width=0.8\linewidth, height=8cm, grid style={dashed, gray!30}, xmin= 0, % start the diagram at this x-coordinate xmax= 5, % end the diagram at this x-coordinate ymin= 0, % start the diagram at this y-coordinate ymax= 3, % end the diagram at this y-coordinate axis background/.style={fill=white}, xlabel=$x$, ylabel=$y$, tick align=outside, minor tick num=-3, enlargelimits=true, tension=0.08] \addplot[domain= 2:3, thick,samples=50, red] {0.5*x}; \addplot[domain=-5:5, thick,samples=50, blue, dashed] {-2*x+6}; \addplot[domain=1:1.5, thick, samples=50, orange] {3*x-3}; \addplot[domain=4:5, thick, samples=50, green] {-x+5}; \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)}; \draw[thick, dashed] (axis cs:2,2) -- (axis cs:1.5,1.5); \draw[thick, dashed] (axis cs:2,2) -- (axis cs:4,1); \addlegendentry{$f(x)=\frac{1}{2}x, D = [2,3]$} \addlegendentry{$f_\bot(x)=-2x+6, D=[-5,5]$} \addlegendentry{$h(x)=3x-3, D=[1,1.5]$} \addlegendentry{$h(x)=-x+5, D=[4,5]$} \end{axis} \end{tikzpicture} \caption{Different situations when you have linear functions which are defined on a closed intervall} \label{fig:linear-min-distance-closed-intervall} \end{figure} The point with minimum distance can be found by: \[\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} = \begin{cases} S_1(f, P) &\text{if } S_1(f, P) \cap [a,b] \neq \emptyset\\ \Set{a} &\text{if } S_1(f, P) \ni x < a\\ \Set{b} &\text{if } S_1(f, P) \ni x > b \end{cases}\] If $S_1(f, P) \cap [a,b] \neq \emptyset$, then $\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} = S_1(f,P) \cap [a,b]$, because $S_1(f,P)$ gives all global minima of $f$. Those are also minima for the intervall $[a,b]$. There are not more minima, because $S_1$ gives all minima of $P$ to $f$. If $S_1(f, P) \cap [a,b] = \emptyset$, then it is not that simple. But we can calculate the distance function: \begin{align} d_{P,f}(x) &= \sqrt{(x-x_P)^2 + (f(x) - y_P)^2}\\ &= \sqrt{(x^2 - 2x x_P + x_P^2) + (mx + (t-y_P))^2}\\ &= \sqrt{(x^2 - 2x x_P + x_P^2) + m^2 x^2 + 2mx(t-y_P) + (t-y_P)^2}\\ &= \sqrt{x^2(1+m^2) + x(-2 x_P + 2m(t-y_P)) + (x_P^2 + (t-y_P)^2)} \end{align} This function (defined on $\mdr$) is symmetry to the axis \begin{align} x_S &= - \frac{-2 x_P + 2m(t-y_P)}{2(1+m^2)}\\ &= \frac{x_P - m(t-y_P)}{1+m^2}\\ &= \frac{m}{m^2+1} (y_P + \frac{1}{m} x_P - t) \end{align} $f$ is on $(-\infty, x_S]$ strictly monotonically decreasing and on $[x_S, + \infty)$ strictly monotonically increasing. Thus we can conclude: \[\forall x,y \in \mdr: x \leq y < x_S \Rightarrow d_{P,f}(x_S) < d_{P,f}(y) \leq d_{P,f}(x)\] \[\forall x,y \in \mdr: x_S < y \leq x \Rightarrow d_{P,f}(x_S) < d_{P,f}(y) \leq d_{P,f}(x)\] When $S_1(f, P) \cap [a,b] = \emptyset$, then you can have two cases: \begin{itemize} \item $a \leq b < x_S$: $b$ has the shortest distance in $[a,b]$ on the graph of $f$ to $P$. \item $x_S < a \leq b$: $a$ has the shortest distance in $[a,b]$ on the graph of $f$ to $P$. \end{itemize}