\documentclass[a4paper,10pt]{article} \usepackage{amssymb, amsmath} \DeclareMathOperator{\arcsinh}{arcsinh} \DeclareMathOperator{\arccosh}{arccosh} \DeclareMathOperator{\arctanh}{arctanh} \usepackage[utf8]{inputenc} % this is needed for umlauts \usepackage[ngerman]{babel} % this is needed for umlauts \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf %layout \usepackage[margin=2.5cm]{geometry} \usepackage{parskip} \pdfinfo{ /Author (Peter Merkert, Martin Thoma) /Title (Wichtige Formeln der Analysis I) /CreationDate (D:20120221095400) /Subject (Analysis I) /Keywords (Analysis I; Formeln) } %\everymath={\displaystyle} \begin{document} \title{Analysis Formelsammlung} \author{Peter Merkert, Martin Thoma} \date{21. Februar 2012} \section{Grenzwerte} \begin{table}[ht] \begin{minipage}[b]{0.5\linewidth}\centering \begin{align*} \lim_{x \to 0} \frac {\sin x}{x} &= 1 \\ \lim_{x \to 0} \frac {e^x - 1}{x} &= 1 \\ \lim_{h \to 0} \frac {e^{{x_0} + h} - e^{x_0}}{h} &= e^{x_0} \\ \sum_{n = 0}^{\infty} (-1)^n \frac {(-1)^{n + 1}}{n} &= \log 2 \\ \cos x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n}}{(2n)!} \\ \sin x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n + 1}}{(2n + 1)!} \end{align*} \end{minipage} \hspace{0.5cm} \begin{minipage}[b]{0.5\linewidth} \centering \begin{align*} \cosh x = \frac {1}{2} (e^x + e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n}}{(2n)!} \\ \sinh x = \frac {1}{2} (e^x - e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n + 1}}{(2n + 1)!} \\ e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} = \lim_{n\to\infty} \left (1+\frac{x}{n} \right )^n\\ \sum_{n = 0}^{\infty} (-1)^n \frac {x^{n + 1}}{n + 1} &= \log (1+x) \; x \in (-1,1) \\ \sum_{n = 0}^{\infty} x^n &= \frac {1}{1 - x} (x \in (-1,1)) \\ 0,\bar{3} &= \sum_{n = 1}^{\infty} \frac {3}{(10)^n} \end{align*} \end{minipage} \end{table} \section{Zusammenhänge} \begin{align*} (\cos x)^2 + (\sin x)^2 &= 1 \\ (\cosh x)^2 - (\sinh x)^2 &= 1 \\ \tan x &= \frac {\sin x}{\cos x} \\ \tanh x &= \frac {\sinh x}{\cosh x} \\ (x + y)^n &= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \end{align*} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Ableitungen} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{table}[ht] \begin{minipage}[b]{0.3\linewidth}\centering \begin{align*} (\sin x)' &= \cos x \\ (\cos x)' &= -\sin x \\ (\tan x)' &= \frac{1}{\cos^2 x} \\ (\sinh x)' &= \cosh x \\ (\cosh x)' &= \sinh x \\ \end{align*} \end{minipage} \hspace{0.1cm} \begin{minipage}[b]{0.3\linewidth} \centering \begin{align*} (\arcsin x)' &= \frac {1}{\sqrt{1-x^2}} \\ (\arccos x)' &= - \frac {1}{\sqrt{1-x^2}} \\ (\arctan x)' &= \frac {1}{1 + x^2} \\ % (\arcsinh x)' &= \frac {1}{\sqrt{1+x^2}} \\ % (\arccosh x)' &= \frac {1}{\sqrt{(1-x^2) \cdot (1+x^2)}} \\ % (\arctanh x)' &= \frac {1}{1 - x^2} \end{align*} \end{minipage} \hspace{0.1cm} \begin{minipage}[b]{0.3\linewidth} \centering \begin{align*} (\log x)' &= \frac{1}{x} \\ \end{align*} \end{minipage} \end{table} \section{Werte} \begin{table}[h] \centering \begin{tabular}{llll} \(\arctan(0) = 0\) & \(\sin(0) = 0\) & \(\cos(0) = 1\) \\ \(\arctan(1) = \frac{\pi}{4}\) & \(\sin(\frac{\pi}{2}) = 1\) & \(\cos(\frac{\pi}{2}) = 0\)\\ \end{tabular} \end{table} \end{document}