\todo[inline]{calculate...} \[x = \frac{(1+i \sqrt{3})\alpha}{\sqrt[3]{12} \cdot t} -\frac{(1-i\sqrt{3}) t}{2\sqrt[3]{18}}\] \begin{align} x^3 &= \underbrace{\left (\frac{(1+i\sqrt{3})\alpha}{\sqrt[3]{12} \cdot t} \right)^3}_{=: \raisebox{.5pt}{\textcircled{\raisebox{-.9pt} {1}}}} \underbrace{- 3 \left(\frac{(1+i\sqrt{3})\alpha}{\sqrt[3]{12} \cdot t} \right)^2 \left(\frac{(1-i\sqrt{3})t}{2 \sqrt[3]{18}} \right)}_{=: \raisebox{.5pt}{\textcircled{\raisebox{-.9pt} {2}}}}\\ &\hphantom{{}=}+ \underbrace{3 \left(\frac{(1+i\sqrt{3})\alpha}{\sqrt[3]{12} \cdot t} \right) \left(\frac{(1-i\sqrt{3})t}{2 \sqrt[3]{18}}\right)^2}_{=: \raisebox{.5pt}{\textcircled{\raisebox{-.9pt} {3}}}} \underbrace{- \left(\frac{(1-i\sqrt{3})t}{2 \sqrt[3]{18}}\right)^3}_{=: \raisebox{.5pt}{\textcircled{\raisebox{-.9pt} {4}}}} \end{align} Now simplify the summands: \begin{align} \raisebox{.5pt}{\textcircled{\raisebox{-.9pt} {1}}} &= \left (\frac{(1+i\sqrt{3})\alpha}{\sqrt[3]{12} \cdot t} \right)^3\\ &= \frac{\alpha^3(1-3i\sqrt{3} - 3 \cdot 3 + \sqrt{27} i)}{12 t^3}\\ &= \frac{-8\alpha^3}{12 t^3}\\ &= \frac{-2 \alpha^3}{3 t^3}\\ \raisebox{.5pt}{\textcircled{\raisebox{-.9pt} {2}}} &=- 3 \left(\frac{(1+i\sqrt{3})\alpha}{\sqrt[3]{12} \cdot t} \right)^2 \left(\frac{(1-i\sqrt{3})t}{2 \sqrt[3]{18}} \right)\\ &= \frac{-3\alpha^2(1+2\sqrt{3}i-3)(1-i\sqrt{3})t}{t^2 \sqrt[3]{2^4 \cdot 3^2} \cdot 2 \sqrt[3]{2 \cdot 3^2}}\\ &= \frac{-3\alpha^2((1+2\sqrt{3}i - 3)+(- i\sqrt{3}+2\cdot 3 + i\sqrt{3}))}{12 t \sqrt[3]{12}}\\ &= \frac{-\alpha^2(4+2\sqrt{3}i)}{4t\sqrt[3]{12}}\\ &= \frac{-\alpha^2(2+\sqrt{3}i)}{2t\sqrt[3]{12}}\\ \raisebox{.5pt}{\textcircled{\raisebox{-.9pt} {3}}} &= 3 \left(\frac{(1+i\sqrt{3})\alpha}{\sqrt[3]{12} \cdot t} \right) \left(\frac{(1-i\sqrt{3})t}{2 \sqrt[3]{18}}\right)^2\\ &= \frac{3(1+i\sqrt{3})\alpha (1-2i\sqrt{3} - 3)t}{4 \sqrt[3]{12 \cdot 18^2}}\\ &= \frac{3 \alpha t((1-2i\sqrt{3}-3)+(i\sqrt{3} + 2\cdot 3 - 3i\sqrt{3}))}{4 \sqrt[3]{2^2 \cdot 3 \cdot (2 \cdot 3^2)^2}}\\ &= \frac{3 \alpha t(4-4\sqrt{3}i)}{4 \cdot 2 \cdot 3 \sqrt[3]{2 \cdot 3^2}}\\ &= \frac{\alpha t(1-\sqrt{3}i)}{2\sqrt[3]{18}}\\ \raisebox{.5pt}{\textcircled{\raisebox{-.9pt} {4}}} &= - \left(\frac{(1-i\sqrt{3})t}{2 \sqrt[3]{18}}\right)^3\\ &= -\frac{(1-3i\sqrt{3} - 3 \cdot 3 + i \sqrt{27}) t^3}{8 \cdot 18}\\ &=- \frac{t^3 (-8)}{8 \cdot 18}\\ &= \frac{t^3}{18} \end{align} Now get back to the original equation: \begin{align} 0 &\stackrel{!}{=} x^3 + \alpha x + \beta \\ &= \left (\frac{-2 \alpha^3}{3 t^3} + \frac{-\alpha^2(2+\sqrt{3}i)}{2t\sqrt[3]{12}} + \color{blue}\frac{\alpha t(1-\sqrt{3}i)}{2\sqrt[3]{18}}\color{black} + \frac{t^3}{18} \right )\\ &\hphantom{{}=} + \color{blue}\alpha\color{black} \left (\frac{(1+i \sqrt{3})\alpha}{\sqrt[3]{12} \cdot t} \color{blue}-\frac{(1-i\sqrt{3}) t}{2\sqrt[3]{18}} \color{black} \right ) + \beta\\ &= \frac{-2 \alpha^3}{3 t^3} + \frac{\alpha^2(2(1+i\sqrt{3})-(2+\sqrt{3}i))}{2t\sqrt[3]{12}} + \frac{t^3}{18} + \beta\\ &= \frac{-24 \alpha^3 + (3\sqrt[3]{18}t^2)(\alpha^2\sqrt{3}i) + 2t^3+36 t^3 \beta}{36t^3} \end{align}