mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
started analyzing t
This commit is contained in:
parent
acc9121723
commit
fb48885a4e
3 changed files with 18 additions and 0 deletions
|
@ -0,0 +1,14 @@
|
|||
\begin{align}
|
||||
t &:= \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\\
|
||||
&= \sqrt[3]{\sqrt{3 \cdot \left (4 \left (\frac{1- 2 aw}{2 a^2} \right )^3 + 27 \left (\frac{-z}{2 a^2} \right )^2 \right )} -9 \frac{-z}{2 a^2}}\\
|
||||
&= \sqrt[3]{\sqrt{3 \cdot \left (4 \left (\frac{1- 2 a (y_P+\frac{b^2}{4a}-c)}{2 a^2} \right )^3 + 27 \left (\frac{-(x_P+\frac{b}{2a})}{2 a^2} \right )^2 \right )}
|
||||
-9 \frac{-(x_P+\frac{b}{2a})}{2 a^2}}\\
|
||||
&= \sqrt[3]{\sqrt{12a^4 \cdot \left (4 \frac{\left ( 1- 2 a (y_P+\frac{b^2}{4a}-c) \right )^3}{2 a^2} + 27 \left (x_P^2+2 x_P \frac{b}{2a} + \frac{b^2}{4a^2} \right )\right )}
|
||||
+ 9 \frac{x_P+\frac{b}{2a}}{2 a^2}}\\
|
||||
&= \sqrt[3]{\sqrt{\frac{12a^4}{4a^2} \left (8 \left ( 1- 2 a (y_P+\frac{b^2}{4a}-c) \right )^3 + 27 (4 a^2 x_P^2+4a x_P \frac{b}{2a} + b^2 )\right )}
|
||||
+ 9 \frac{x_P+\frac{b}{2a}}{2 a^2}}\\
|
||||
&= \sqrt[3]{\sqrt{3a^2 \left (8 \left ( 1- 2 a (y_P+\frac{b^2}{4a}-c) \right )^3 + 27 (4 a^2 x_P^2+4a x_P \frac{b}{2a} + b^2 )\right )}
|
||||
+ 9 \frac{x_P+\frac{b}{2a}}{2 a^2}}
|
||||
\end{align}
|
||||
|
||||
\todo[inline]{When is $t = 0$? When is $t \in \mdr$?}
|
Binary file not shown.
|
@ -164,6 +164,10 @@ Otherwise, there is only one solution $x_1 = 0$.
|
|||
Let $t$ be defined as
|
||||
\[t := \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\]
|
||||
|
||||
\subsubsection{Analyzing $t$}
|
||||
\input{analyzing-t.tex}
|
||||
|
||||
\subsubsection{Solutions of $x^3 + \alpha x + \beta$}
|
||||
I will make use of the following identities:
|
||||
\begin{align*}
|
||||
(1-i \sqrt{3})^2 &= -2 (1+i \sqrt{3})\\
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue