mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
Bild einer sphärischen Projektion hinzugefügt
This commit is contained in:
parent
4b67be3a5e
commit
f013912de0
4 changed files with 113 additions and 13 deletions
Binary file not shown.
|
@ -22,10 +22,11 @@
|
|||
\usepackage[colorinlistoftodos]{todonotes}
|
||||
\usepackage{pgfplots}
|
||||
\usepackage[arrow, matrix, curve]{xy}
|
||||
\usepackage{caption} % get newlines within captions
|
||||
\usepackage{tikz}
|
||||
\usepackage{tikz-3dplot}
|
||||
\usepackage{tkz-fct}
|
||||
\usetikzlibrary{3d,calc,intersections,er,arrows,positioning,shapes.misc,patterns}
|
||||
\usetikzlibrary{3d,calc,intersections,er,arrows,positioning,shapes.misc,patterns,fadings,decorations.pathreplacing}
|
||||
\usepackage{cleveref} % has to be after hyperref, ntheorem, amsthm
|
||||
\usepackage{shortcuts}
|
||||
|
||||
|
|
|
@ -459,31 +459,33 @@ Auch gibt es Mengen, die sowohl abgeschlossen als auch offen sind.
|
|||
sodass $\pi$ stetig wird.
|
||||
|
||||
\begin{beispiel}[Stereographische Projektion] \xindex{Projektion!stereographische}
|
||||
$\mdr^n$ und $S^n \setminus \Set{P}$ sind homöomorph für
|
||||
beliebiges $P \in S^n$
|
||||
$\mdr^n$ und $S^n \setminus \Set{N}$ sind homöomorph für
|
||||
beliebiges $N \in S^n$
|
||||
|
||||
\begin{align*}
|
||||
S^n &= \Set{x \in \mdr^{n+1} | \|x\| = 1}\\
|
||||
&= \Set{x \in \mdr^{n+1} | \sum_{i=1}^{n+1} x_i^2}
|
||||
\end{align*}
|
||||
|
||||
Sei ohne Einschränkung $P = \begin{pmatrix}0\\ \vdots\\ 1\end{pmatrix}$.
|
||||
Sei ohne Einschränkung $N = \begin{pmatrix}0\\ \vdots\\ 1\end{pmatrix}$.
|
||||
|
||||
\begin{align*}
|
||||
f: &S^n \setminus \Set{P} \rightarrow \mdr^n\\
|
||||
Q &\mapsto \overline{L_Q \cap H}^\text{genau ein Punkt}
|
||||
f: &S^n \setminus \Set{N} \rightarrow \mdr^n\\
|
||||
P &\mapsto \overbrace{L_P \cap H}^\text{genau ein Punkt}
|
||||
\end{align*}
|
||||
|
||||
wobei $\mdr^n = H = \Set{\begin{pmatrix}x_1\\ \vdots \\ x_{n+1}\end{pmatrix} \in \mdr^{n+1} | x_{n+1} = 0}$
|
||||
und $L_Q$ die Gerade in $\mdr^{n+1}$ durch $P$ und $Q$ ist.
|
||||
und $L_P$ die Gerade in $\mdr^{n+1}$ durch $N$ und $P$ ist.
|
||||
|
||||
\todo[inline]{Bild einer Kugel einfügen, die von einer Ebene $H$
|
||||
geschnitten wird. $P$ ist ganz oben, ein beliebiger Punkt
|
||||
Q ist mit dabei und die Gerade PQ schneidet die Ebene.}
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\input{figures/stereographic-projection}
|
||||
\caption{Visualisierung der sphärischen Projektion\\Bildquelle: \href{http://texample.net/tikz/examples/map-projections/}{texample.net/tikz/examples/map-projections}}
|
||||
\end{figure}
|
||||
|
||||
Sei $Q = \begin{pmatrix}x_1\\ \vdots \\ x_{n+1}\end{pmatrix}$, so
|
||||
ist $x_{n+1} < 1$, also ist $L_Q$ nicht parallel zu $H$. Also
|
||||
schneiden sich $L_Q$ und $H$ in genau einem Punkt.
|
||||
Sei $P = \begin{pmatrix}x_1\\ \vdots \\ x_{n+1}\end{pmatrix}$, so
|
||||
ist $x_{n+1} < 1$, also ist $L_P$ nicht parallel zu $H$. Also
|
||||
schneiden sich $L_P$ und $H$ in genau einem Punkt $\hat{P}$.
|
||||
|
||||
Es gilt: $f$ ist bijektiv und die Umkehrabbildung ist ebenfalls
|
||||
stetig.
|
||||
|
|
97
documents/GeoTopo/figures/stereographic-projection.tex
Normal file
97
documents/GeoTopo/figures/stereographic-projection.tex
Normal file
|
@ -0,0 +1,97 @@
|
|||
%% helper macros
|
||||
\begin{tikzpicture} % CENT
|
||||
\newcommand\pgfmathsinandcos[3]{%
|
||||
\pgfmathsetmacro#1{sin(#3)}%
|
||||
\pgfmathsetmacro#2{cos(#3)}%
|
||||
}
|
||||
\newcommand\LongitudePlane[3][current plane]{%
|
||||
\pgfmathsinandcos\sinEl\cosEl{#2} % elevation
|
||||
\pgfmathsinandcos\sint\cost{#3} % azimuth
|
||||
\tikzset{#1/.estyle={cm={\cost,\sint*\sinEl,0,\cosEl,(0,0)}}}
|
||||
}
|
||||
\newcommand\LatitudePlane[3][current plane]{%
|
||||
\pgfmathsinandcos\sinEl\cosEl{#2} % elevation
|
||||
\pgfmathsinandcos\sint\cost{#3} % latitude
|
||||
\pgfmathsetmacro\yshift{\cosEl*\sint}
|
||||
\tikzset{#1/.estyle={cm={\cost,0,0,\cost*\sinEl,(0,\yshift)}}} %
|
||||
}
|
||||
\newcommand\DrawLongitudeCircle[2][1]{
|
||||
\LongitudePlane{\angEl}{#2}
|
||||
\tikzset{current plane/.prefix style={scale=#1}}
|
||||
% angle of "visibility"
|
||||
\pgfmathsetmacro\angVis{atan(sin(#2)*cos(\angEl)/sin(\angEl))} %
|
||||
\draw[current plane] (\angVis:1) arc (\angVis:\angVis+180:1);
|
||||
\draw[current plane,dashed] (\angVis-180:1) arc (\angVis-180:\angVis:1);
|
||||
}
|
||||
\newcommand\DrawLatitudeCircle[2][1]{
|
||||
\LatitudePlane{\angEl}{#2}
|
||||
\tikzset{current plane/.prefix style={scale=#1}}
|
||||
\pgfmathsetmacro\sinVis{sin(#2)/cos(#2)*sin(\angEl)/cos(\angEl)}
|
||||
% angle of "visibility"
|
||||
\pgfmathsetmacro\angVis{asin(min(1,max(\sinVis,-1)))}
|
||||
\draw[current plane] (\angVis:1) arc (\angVis:-\angVis-180:1);
|
||||
\draw[current plane,dashed] (180-\angVis:1) arc (180-\angVis:\angVis:1);
|
||||
}
|
||||
|
||||
\tikzset{%
|
||||
>=latex, % option for nice arrows
|
||||
inner sep=0pt,%
|
||||
outer sep=2pt,%
|
||||
mark coordinate/.style={inner sep=0pt,outer sep=0pt,minimum size=3pt,
|
||||
fill=black,circle}%
|
||||
}
|
||||
%% some definitions
|
||||
|
||||
\def\R{2.5} % sphere radius
|
||||
\def\angEl{35} % elevation angle
|
||||
\def\angAz{-105} % azimuth angle
|
||||
\def\angPhi{-40} % longitude of point P
|
||||
\def\angBeta{19} % latitude of point P
|
||||
|
||||
%% working planes
|
||||
|
||||
\pgfmathsetmacro\H{\R*cos(\angEl)} % distance to north pole
|
||||
\tikzset{xyplane/.estyle={cm={cos(\angAz),sin(\angAz)*sin(\angEl),-sin(\angAz),
|
||||
cos(\angAz)*sin(\angEl),(0,-\H)}}}
|
||||
\LongitudePlane[xzplane]{\angEl}{\angAz}
|
||||
\LongitudePlane[pzplane]{\angEl}{\angPhi}
|
||||
\LatitudePlane[equator]{\angEl}{0}
|
||||
|
||||
%% draw xyplane and sphere
|
||||
|
||||
\draw[xyplane] (-2*\R,-2*\R) rectangle (2.2*\R,2.8*\R);
|
||||
\fill[ball color=white] (0,0) circle (\R); % 3D lighting effect
|
||||
\draw (0,0) circle (\R);
|
||||
|
||||
%% characteristic points
|
||||
|
||||
\coordinate (O) at (0,0);
|
||||
\coordinate[mark coordinate] (N) at (0,\H);
|
||||
\coordinate[mark coordinate] (S) at (0,-\H);
|
||||
\path[pzplane] (\angBeta:\R) coordinate[mark coordinate] (P);
|
||||
\path[pzplane] (\R,0) coordinate (PE);
|
||||
\path[xzplane] (\R,0) coordinate (XE);
|
||||
\path (PE) ++(0,-\H) coordinate (Paux); % to aid Phat calculation
|
||||
\coordinate[mark coordinate] (Phat) at (intersection cs: first line={(N)--(P)},
|
||||
second line={(S)--(Paux)});
|
||||
|
||||
%% draw meridians and latitude circles
|
||||
|
||||
\DrawLatitudeCircle[\R]{0} % equator
|
||||
\DrawLongitudeCircle[\R]{\angAz} % xzplane
|
||||
\DrawLongitudeCircle[\R]{\angAz+90} % yzplane
|
||||
\DrawLongitudeCircle[\R]{\angPhi} % pzplane
|
||||
|
||||
%% draw xyz coordinate system
|
||||
|
||||
\draw[xyplane,<->] (1.8*\R,0) node[below] {$x$} -- (0,0) -- (0,2.4*\R)
|
||||
node[right] {$y$};
|
||||
\draw[->] (0,-\H) -- (0,1.6*\R) node[above] {$z$};
|
||||
|
||||
%% draw lines and put labels
|
||||
|
||||
\draw[blue,dashed] (P) -- (N) +(0.3ex,0.6ex) node[above left,black] {$\mathbf{N}$};
|
||||
\draw[blue] (P) -- (Phat) node[above right,black] {$\mathbf{\hat{P}}$};
|
||||
\path (S) +(0.4ex,-0.4ex) node[below] {$\mathbf{0}$};
|
||||
\draw (P) node[above right] {$\mathbf{P}$};
|
||||
\end{tikzpicture}
|
Loading…
Add table
Add a link
Reference in a new issue