mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
added images
This commit is contained in:
parent
0e005dabca
commit
e8c8551cd4
3 changed files with 59 additions and 22 deletions
Binary file not shown.
|
@ -118,7 +118,12 @@ U_i = \Set{(x_0: \dots : x_n) \in \mdp^n(\mdr) | x_i \neq 0} &\rightarrow \mdr^n
|
|||
Mannigfaltigkeit.
|
||||
\end{definition}
|
||||
|
||||
\todo[inline]{Bilder mit Verklebung einfügen}
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\input{figures/topology-verklebung.tex}
|
||||
\caption{Verklebung}
|
||||
\label{fig:verklebung}
|
||||
\end{figure}
|
||||
|
||||
\begin{korollar}
|
||||
Sind $X, Y$ Mannigfaltigkeiten der Dimension $n$ bzw. $m$, so ist
|
||||
|
@ -220,26 +225,24 @@ U_i = \Set{(x_0: \dots : x_n) \in \mdp^n(\mdr) | x_i \neq 0} &\rightarrow \mdr^n
|
|||
ist. $R_{+,0}^n$ ist ein \enquote{Halbraum}.
|
||||
\end{definition}
|
||||
|
||||
\begin{beispiel}
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\subfloat[Halbraum]{
|
||||
\input{figures/topology-halfspace.tex}
|
||||
\label{fig:half-space}
|
||||
}%
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\subfloat[Halbraum]{
|
||||
\input{figures/topology-halfspace.tex}
|
||||
\label{fig:half-space}
|
||||
}%
|
||||
|
||||
\subfloat[Pair of pants]{
|
||||
\input{figures/topology-pair-of-pants.tex}
|
||||
\label{fig:pair-of-pants}
|
||||
}%
|
||||
\subfloat[Sphäre mit einem Loch]{
|
||||
\input{figures/topology-sphere-with-hole.tex}
|
||||
\label{fig:sphere-with-hole}
|
||||
}%
|
||||
\label{Mannigfaltigkeiten mit Rand}
|
||||
\caption{Beispiele für Mannigfaltigkeiten mit Rand}
|
||||
\end{figure}
|
||||
\end{beispiel}
|
||||
\subfloat[Pair of pants]{
|
||||
\input{figures/topology-pair-of-pants.tex}
|
||||
\label{fig:pair-of-pants}
|
||||
}%
|
||||
\subfloat[Sphäre mit einem Loch]{
|
||||
\input{figures/topology-sphere-with-hole.tex}
|
||||
\label{fig:sphere-with-hole}
|
||||
}%
|
||||
\label{Mannigfaltigkeiten mit Rand}
|
||||
\caption{Beispiele für Mannigfaltigkeiten mit Rand}
|
||||
\end{figure}
|
||||
|
||||
\begin{definition}\xindex{Rand}
|
||||
Sei $X$ eine $n$-dimensionale Mannigfaltigkeit mit Rand und
|
||||
|
@ -264,7 +267,5 @@ $\partial X$ ist eine Mannigfaltigkeit der Dimension $n-1$.
|
|||
\end{enumerate}
|
||||
\end{definition}
|
||||
|
||||
\todo[inline]{Bilder mit Verklebung einfügen}
|
||||
|
||||
% Die Übungsaufgaben sollen ganz am Ende des Kapitels sein.
|
||||
\input{Kapitel2-UB}
|
||||
|
|
36
documents/GeoTopo/figures/topology-verklebung.tex
Normal file
36
documents/GeoTopo/figures/topology-verklebung.tex
Normal file
|
@ -0,0 +1,36 @@
|
|||
\begin{tikzpicture}[tqft/flow=east]
|
||||
\draw (0,0) ellipse (2cm and 1cm);
|
||||
\def\ringa{(-0.3,0) circle (0.5cm)}
|
||||
\def\ringb{(+0.3,0) circle (0.5cm)}
|
||||
|
||||
\begin{scope}[even odd rule]
|
||||
\clip \ringa;
|
||||
\fill[pattern color=red,pattern=north east lines] \ringb;
|
||||
\end{scope}
|
||||
|
||||
\begin{scope}[even odd rule,shift={(-0.7,-2)}]
|
||||
\clip \ringa;
|
||||
\fill[draw=red,pattern color=red,pattern=north east lines] \ringb;
|
||||
\end{scope}
|
||||
|
||||
\begin{scope}[even odd rule,shift={(+0.7,-2)}]
|
||||
\clip \ringb;
|
||||
\fill[draw=red,pattern color=red,pattern=north east lines] \ringa;
|
||||
\end{scope}
|
||||
\draw \ringa;
|
||||
\draw \ringb;
|
||||
|
||||
\node at (-1,0.3) {$U_i$};
|
||||
\node at (+1,0.3) {$U_j$};
|
||||
\node at (-1.9,-2) {$V_i$};
|
||||
\node at (+1.9,-2) {$V_j$};
|
||||
|
||||
|
||||
\path[->] (-0.35,0) edge [bend angle=10,bend right] node[label={[label distance=0.1cm]210:$\varphi_i$}] {} (-1,-1.5);
|
||||
\path[->] (+0.35,0) edge [bend angle=10,bend left] node[label={[label distance=0.1cm]-30:$\varphi_j$}] {} (+1,-1.5);
|
||||
|
||||
\draw (-1,-2) circle (0.5cm);
|
||||
\draw (+1,-2) circle (0.5cm);
|
||||
|
||||
\draw[->, red, thick] (-0.3,-2) -- (0.3,-2);
|
||||
\end{tikzpicture}
|
Loading…
Add table
Add a link
Reference in a new issue