From e87bfb42ea836b2f591fc08efb3e5ea810615a1c Mon Sep 17 00:00:00 2001 From: Martin Thoma Date: Fri, 6 Dec 2013 00:30:05 +0100 Subject: [PATCH] first part of solution formula is ready --- ...ath-minimal-distance-to-cubic-function.tex | 25 ++++++++++++------- 1 file changed, 16 insertions(+), 9 deletions(-) diff --git a/documents/math-minimal-distance-to-cubic-function/math-minimal-distance-to-cubic-function.tex b/documents/math-minimal-distance-to-cubic-function/math-minimal-distance-to-cubic-function.tex index 06ec681..18688b2 100644 --- a/documents/math-minimal-distance-to-cubic-function/math-minimal-distance-to-cubic-function.tex +++ b/documents/math-minimal-distance-to-cubic-function/math-minimal-distance-to-cubic-function.tex @@ -334,12 +334,12 @@ Because: Then move $f_1$ and $P_1$ by $\frac{b^2}{4a}-c$ in $y$ direction. You get: \[f_2(x) = ax^2\;\;\;\text{ and }\;\;\; P_2 = \left (x_p+\frac{b}{2a},\;\; y_p+\frac{b^2}{4a}-c \right )\] -As $f(x) = ax^2$ is symmetric to the $y$ axis, only points +As $f_2(x) = ax^2$ is symmetric to the $y$ axis, only points $P = (0, w)$ could possilby have three minima. Then compute: \begin{align} - d_{P,f}(x) &= \sqrt{(x-x_{P})^2 + (f(x)-w)^2}\\ + d_{P,{f_2}}(x) &= \sqrt{(x-x_{P})^2 + (f(x)-w)^2}\\ &= \sqrt{x^2 + (ax^2-w)^2}\\ &= \sqrt{x^2 + a^2 x^4-2aw x^2+w^2}\\ &= \sqrt{a^2 x^4 + (1-2aw) x^2 + w^2}\\ @@ -347,16 +347,23 @@ Then compute: &= \sqrt{\left (a^2 x^2 + \nicefrac{1}{2}-a w \right )^2 + (w^2 - (1-2 a w)^2)}\\ \end{align} -For $w \leq \nicefrac{1}{2a}$ you only have $x = 0$ as a minimum. -For all other points $P = (0, w)$, there are exactly two minima. +The term +\[a^2 x^2 + (\nicefrac{1}{2}-a w)\] +should get as close to $0$ as possilbe when we want to minimize +$d_{P,{f_2}}$. For $w \leq \nicefrac{1}{2a}$ you only have $x = 0$ as a minimum. +For all other points $P = (0, w)$, there are exactly two minima $x_{1,2} = \pm \sqrt{aw - \nicefrac{1}{2}}$. So the solution is given by -\[\underset{x\in\mdr}{\arg \min d_{P,f}(x)} = \begin{cases} - x_1 = todo \text{ and } x_2 = todo &\text{if } x_P = - \frac{b}{2a} \text{ and } y_p + \frac{b^2}{4a} - c > \frac{1}{2a} \\ - x = todo &\text{if } x_P = - \frac{b}{2a} \text{ and } y_p + \frac{b^2}{4a} - c \leq \frac{1}{2a} \\ - x = todo &\text{if } x_P \neq - \frac{b}{2a} - \end{cases}\] +\begin{align*} +x_S &:= - \frac{b}{2a}\\ +\underset{x\in\mdr}{\arg \min d_{P,f}(x)} &= \begin{cases} + x_1 = +\sqrt{a (y_p + \frac{b^2}{4a} - c) - \frac{1}{2}} + x_S \text{ and } &\text{if } x_P = x_S \text{ and } y_p + \frac{b^2}{4a} - c > \frac{1}{2a} \\ + x_2 = -\sqrt{a (y_p + \frac{b^2}{4a} - c) - \frac{1}{2}} + x_S\\ + x_1 = x_S &\text{if } x_P = x_S \text{ and } y_p + \frac{b^2}{4a} - c \leq \frac{1}{2a} \\ + x_1 = todo &\text{if } x_P \neq x_S + \end{cases} +\end{align*} \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%